CYTOMEGALOVIRUS INFECTIONS IN PAEDIATRICS

An Essay

Submitted for Partial Fullfilment of

Master Degree in Paediatrics

117-37

Ву

LAILA FOUAD BOULOS

M.B., B.Ch.

618.9200194 5. F

Supervisor

Prof. DR. KHALIL ABDEL HADY

Prof. of Paediatrics

Faculty of Medicine

Ain Shams University

Faculty of Medicine

Ain Shams University

1987

LIST OF CONTENTS

_	Arknowledgement	
	Introduction	l
•	listorica! Review:	خ
	dicology	5
	Cathology	10
	spidemiology	i 6
	Torgonital and Perinatal CMV Infection	29
	'ytopegalovirus Infection in the Normal Host	56
	ytonegalovirus Infection in the Immunocompromised	
	most	66
)_ grasis	93
	Dillorential Diagnosis	98
. -	Prevention of Cytomegalovirus Infection 11	16
	Cherapeutic Approaches to CMV Infection	27
	Moglish Summary	31
	<ε orences	35
.:	Grabic Summary	

LIST OF ABBREVIATIONS

 \forall

- AIDS: Acquired immune deficiency syndrome.
- MG: Antithymocyte globulin.
- PMT: Bone marrow transplant.
- : :: Complement fixation.
- Tal: Cytomegalic inclusion disease.
- : :: Cytomegalovirus.
- (a.s. Central Nervous System.
- FEAFE: Detection of early antigen fluorescent foci.
- Whit: Dihydroxy propoxymethyl guanine.
 - : Eostein Barr Virus.
 - SA: Lozyme linked immunosorbent assay.
- WMD: Craft-versus-host disease.
- Law: derpes simplex virus.
- 10 V 111: Human T-cell lymphotropic virus type 3.
 - : !mmunofluorescent antibody.
- in: Interferon.
- 1-4: Indirect haemagglutination.
- ""M: Murine cytomegalovirus.
- Marks: Non-infectious enveloped particles.
- !!:: /adioimmunoassay.

4

ACKNOWLEDGEMENT

I would like to express my deep gratitude and apprelation to Dr. Khalil Abdel Hady, Professor of Pediatrics,
limit; of Medidine, Ain Shams University, for giving
limits the honour of working under his supervision, for his
limits and his invaluable remarks and suggestions
lead hout the whole work.

o him I am delighted to acknowledge my indebtedness.

Laila Fouad Boulos 1987

INTRODUCTION

The cytomegalovirus is a DNA virus belonging to the outpes group of viruses. It is the most frequent known these of congenital viral infections in man. It is endemic altroughout the world, occurring in about 0.5% to 2% of congenitally infected infants may present with hepatosplenomegaly, microcephaly, maichee, jaundice, chorioretinitis and intracranial calcitections. 90% have no clinical manifestations at birth. Thus 10% of this population are at a risk for developing multitude of developmental abnormalities (Stagno et 1984),

A far greater number of inapparent CMV infections cours in meanates as a result of viral transmission from measured genital tract or breast milk (Kumar et al., 1984). A quired CMV infection in older children may be asymptomated on may produce an illness similar to infectious monotons with or without multiorgan involvement (Cohen toway, 1985).

The most recent area of CMV morbidity to be appreciated. This been its transmission or reactivation in immunoces procled patients especially among organ transplant in ipinots and AIDS patients. As with other agents whose initial association was detected with only a limited clinical syndrome, CMV has emerged as a ubiquitous virus with host interactions ranging over the full spectrum

re health and illness (Krugman and Katz, 1981).

- * Virology
- * Pathology
- · Tpidemiology
- * Clinical features
- * Diagnosis
- : Differential diagnosis
- A Prophylaxis and treatment

HISTORICAL REVIEW

HISTORICAL REVIEW

Late in the nineteenth century pathologists described swollen inclusion-bearing cells in the organs of infants the had died of presumed congenital syphilitic infections. in use cells were so large and unusual in appearance that initially they were thought to be amoebae (Ribbert, 1904). erly in 1921 was it suggested by Goodpasture and Talbot rest the cellular alterations were not unlike those seen er (1906) in cutaneous lesions of varicella, and and a coposed that these large cells were host cells, solic due to virus-induced injury. A similar view was j :: Von Glahn and Pappenheimer (1925) who observed readilities between cytomogalic cells and those seen roctic lesions. The investigators were so impressed ! - also dramatic swelling of these infected cells that " . ; . sed the term cytomegaly to describe the effect. 1: () her similar inclusion-bearing cells were demonstratc' .. alivary glands of some children who had died of early of causes. Owing to this propensity to affect the relivary glands, Farber and Wolbach (1932) used the tim "alivary gland virus disease". However, since s in. viruses were known to replicate in salivary glands, war ration (1960) suggested that a preferable descrip-

Further progress was delayed until the advent of the tissue culture era. Smith in 1954 was the first to

carry out serial propagation of murine CMV in mouse tissue cultures. Since this success in isolating the virus in tissue culture and the subsequent development of antigens for use in a variety of serological tests, Weller and Manshaw (1962), and Medearis (1964) have established that havan cytomegaloviruses are significant pathogens of the havan fetus capable of inducing a wide spectrum of occulometrial defects, as well as a variety of extraneural enterpolities. These observations have been extended anti-outlined by numerous investigators in the last decade.

VIROLOGY

VIROLOGY

Morphologic Characteristics:

Cytomegalovirus is a member of the herpesvirus family, and is among the largest of viruses, with a diameter of approximately 150 to 200 nm. An inner core consisting of DNA interwined with protein is surrounded by a protein repsid of symmetrical structure composed of 162 capsomeres. This and leocapsid is covered by a loose amorphous envelope that is derived from the nuclear membrane of the host coll. Loss of this envelope greatly reduces virus infectivity (Pagano and Lemon, 1981) (Fig. 1).

Antigenic Composition:

The relatively large herpesvirus genome contains of cent genetic information to encode probably more complex viruses of man. Many of these proteins, serve as all the identical morphologic manerate of the herpesviruses, human CMV strains are during itself unrelated to other human herpes viruses. It was they are related to CMV-like agents isolated to abduman primates. As with HSV, strains of CMV recensivate considerable antigenic diversity when analyzed either by neutralization kinetics or complement fixation. However, no refin tive grouping of strains on the basis of anticeric drive mass yet emerged (Pagano and Lemon, 1994).

In CMV infected cells, two sets of virus-specific coaligons and antibodies appear at different times, as was noted by immunofluorescence techniques. "Early antipens" represent the presence of viral DNA, and appear to the absence of viral replication. After the advent TWA synthesis, so-called "late antigens" appear in the auctlear and cytoplasmic inclusion bodies. Early and late antigens induce corresponding antibodies detectable to indirect immunofluorescence. Other antibodies produced temporate to CMV infections are detected by neutralization, CF, and indirect haemagglutination procedures (iap event and Hanshaw, 1981).

ingligation:

Replication of the virus appears to be relatively we, and newly made infectious particles are first detector 48-72 hours after infection of cell cultures, with a low virus-to-cell multiplicity. Under these conditions extochemical and immunofluorescent techniques best reveal the synthesis of viral proteins and the development of the cytologic lesions that accompany viral multiplication, exactly, focal lesions, followed by generalized cytopathic changes including rounding of cells and the appearance of large intranuclear desinophilic inclusion bodies. To not biosynthesis of DNA and accumulation of early and late viral proteins are detected initially in the nucleus. Electron microscopic studies show that viral particles, like herpes simplex virions, are assembled

()

The nucleus, attain their envelope at the nuclear rembrane, and may form cytoplasmic inclusions or dense ledies. The maturation of viral particles appears to le inefficient; only rare completely assembled virions can be detected among many incomplete particles (many in these are non-infectious dense bodies formed by enveloped viral proteins without DNA or assembled capsids). It has the yield of infectious virus in cell culture is coop, and as many as 10 particles are needed to initiate the colion of a new culture. Most infectious virus remains coultant and cells to a culture initiates viral propagation and therefore the addition of intact and cells to a culture initiates viral propagation as at efficiently (Dulbecco and Ginsberg, 1980).

Viral replication is dependent on host cell metabolism in the case of experimentally by blocking cellular into an protein synthesis. Such metabolic inhibitors can contain a state of viral latency. Conceivably, similar the case of the case of the case of the phonomenon of persistent or latent infection seem in the case and Hanshaw, 1981).

Host Range and Susceptible Host Cells:

May species of animals are infected with their own species cytomegaloviruses, but no laboratory animal has proved susceptible to infection with cytomegaloviruses of humans. Virus has been use alled and propagated only in cultured human tubroblasts (Dulbecco and Ginsberg, 1980).

In vivo, however, virus appears to multiply in a variety of cell types, including many of epithelial morphology. CVV replicates in the epithelial cells of the respiratory tract, salivary glands, and kidney; in the kidney the tabular cells shed virus for prolonged periods. In addit-..., CMV is frequently present in cervical secretions, of recipility late in prognancy. The virus may also be found . He somen in CMV mosonucleosis after its disappearance erun other sites; the exact site of replication in the table penital tract is uncertain. As with other herpes mean, spread via the blood stream is accomplished by coll-associated virzenia, the virus being associated with both lymphocytes and polymorphonuclear leukocytes. · · · I susceptibility to human CMV is strikingly affected Ly age. Infections in utero result in devastating destrucilim of the central nervous system, whereas encephalitis from post-natal CMV infection is exceedingly rare (Pagano and Lemon, 1981).

ſ