EPITHELIAL CHANGES FOLLOWING CARBON DIOXIDE LASER OF INTRA-EPITEELIAL NEOPLASIA OF THE CERVIX

THESIS

submitted in partial fulfilment of MD in Obstetrics and Gynaecology

by

Mourad Mohyi El-Din El-Said
MB BCh MS MRCOG

Supervisors

Dr Mohamed B. Sammour
Professor of Obstetrics and
Gynaecology
Head of Cyto-Diagnostic Unit
Ain Shams University
Cairo

Dr M. Ezz El-Dim Azzam Professor of Obstetrics and Gynaecology Ain Shams University Cairo

Dr Harit. Lamki
Postgraduate Advisor and
Consultant in Obstetrics and Gynaecology
The Queen's Thiversity of Felfast and
Royal Maternity Hospital
Belfast, Northern Treland

20543

Ain Shams University

1986

بسم مرارم الرحم الأنسان القرائي المراد المر

INDEX

						Page
Acknowledgements	• •	• •				i
List of Figures						iv
List of Tables		• •	• •	• •	• •	vi
INTRODUCTION	• •	• •	• •	. •	. •	1
AIMS OF THE STUDY	••		• •			3
HISTOLOGY AND CYTOLOGY	OF TH	E ADULT	CERVIX			4
The squamo-columnar j	unctio	מכ				9
Ectopy	• •					10
Origin of ectopy						10
Incidence of ectopy						11
The transformation zo	ne					12
The stimulus to metar	lasia		• •	••	• •	12
THE DISEASE						15
Dysplasia	• •	• •	••	••		16
Carcinoma-in-situ	• •	••		••	• •	17
Advantages of the new			 - (CIN)		• •	19
					• •	19
Objections to the new			е	• •	• •	19
Histological features						2.4
CIN I	• •	• •	• •	• •	• •	21
CIN II	• •	• •	• •	• •	• •	21
CIN III	• •	• •	• •	••.	• •	22
Histological differen						
errors in diagnosis			• •	• •	• •	28
Cytological diagnosis	s of C	IN	• •		• •	34
CIN I	• •	• •	• •	• •	• •	35
CIN II		• •	• •	• •		35
CIN III		• •	• •		• •	35
ARTIOLOGY IN CERVICAL :	INTRA-1	EPITHEL	IAL NEOR	PLASIA		45
COLPOSCOPY						52
History	• •	• • •				52
Assessment of the cen				••	• •	54
Technique of colposed	-				• • •	56
Basis of colposcopic		ologe ologe			• •	57
Vascular pattern	_	orogy	• •	• •	• •	58
		• •	• •	••	••	58
Normal vascular par Vascular pattern is		 nvasive	and inv	rasive	• •	20
lesions	•••					58
Intercapillary dista						59
Surface contour	••					60
Colour tone	• •	• •				60
Clarity of demarcation			••	••		61
Todina test		• •	• •	••	• •	S1

Classification of colposcopic findings	• •		67
Endocervical curettage (ECC)			69
The role of colposcopy in cervical infec	ction	• •	71
The indications for cervical conization			72
Colposcopically-directed biopsy and its	accuracy		74
LASER			78
Introduction		• •	78
Physics		• •	78
Properties of CO2 laser radiation		• •	80
Monochromaticity		• •	80
Coherence	• •		81
Slight divergence	• •	••	81
Biophysical data on lasers	••		82
Safety of the laser	• •		86
Reparative process after laser vaporizat		• • •	88
		••	
MATERIAL AND METHODS			92
	• •	••	J-
POSTOPERATIVE INSTRUCTIONS AFTER LASER VAL	PORTZATTO	NOF	
THE LASER			99
		••	, ,
RESULTS			103
Biological factors	• • •		103
Pre-treatment assessment	• • •	• • •	108
Results of treatment and its sequellae	••	• •	112
normano or monament and reproceducting	••	••	114
DISCUSSION			124
Pre-treatment assessment	••	• •	124
110 DEGERMONG GEOGRAMMING 1	••	• •	-20
CONCLUSIONS			136
	••	• •	100
ENGLISH SUMMARY			140
	••	••	1-10
REFERENCES			142
	••	• •	144
ARABIC SUMMARY			160
	• •	• •	100

LIST OF FIGURES

		Page
1.	CIN I. Cells in the lower third of the epithelium show no evidence of cytoplasmic differentiation or of orderly stratification with high nucleocytoplasmic ratio and with nuclear crowding. Some superficial cells have abnormal nuclei	24
2.	CIN II. Undifferentiated non-stratified cells with pleomorphic nuclei and a high nucleocyto-plasmic ratio that extend up to two-thirds of the epithelial thickness. Superficial cells show variable degrees of differentiation	25
3.	CIN III. The undifferentiated cells are present in the full thickness of the epithelium with high degree of nuclear pleomorphism. Dysplastic nuclei are present up to the upper third	26
4.	CIN I (mild dysplasia). Well differentiated cells with dyskaryotic nuclei. Evidence of koilocytosis is present in the smear as a result of papilloma viral infection	42
5.	CIN II (moderate dysplasia). Well differentiated cells with parabasal dyskaryotic cells	43
6.	CIN III (carcinoma-in-situ). Undifferentiated parabasal cells with dyskaryotic nuclei. No evidence of invasion	44
7.	Wide transformation zone showing aceto-white area on the anterior lip of the cervix with coarse punctation (CIN II)	62
8.	Wide transformation zone on the cervix of a 17-year-old girl showing aceto-white areas with mosaicism (CIN III)	6 3
9.	Colposcopic examination showing wide area of transformation zone. There is evidence of mosaic pattern with coarse punctation. Mixed picture of CIN II and CIN III	64
10.	Colposcopic examination showing marked aceto- white area on the anterior lip of the cervix (flat condylome) with mosaicism CIN III	65

11.	Schematic drawing of a laser; the active material is optically pumped. The light is amplified along the longitudinal axis of the system by means of multiple reflections between mirrors bounding the active material. The laser beam is emitted	7 0
	through a partially transparent mirror	79
12.	The spectral band width of lasers compared to an ordinary light source	80
13.	Phase relationship in ordinary light (various frequencies, short coherence length, incoherent in time and space) and in the laser beam (fixed frequency, long coherence length, coherent in time and space)	8:
14.	Divergence of the beam with ordinary light sources and lasers	82
15.	Schematic illustration showing laser beam intensity	85
16.	Thermal tissue alterations and their visible features	86
17.	Colposcopic view of satisfactory CO ₂ laser treatment to a depth of 7 mm with a high density power machine	98
18.	Colposcopic examination of the cerwix showing persistent aceto-white area with coarse punctation (CIN II). CO2 laser treatment was satisfactory in this case	119
19.	Satisfactory colposcopic examination showing normal looking cervix after satisfactory CO2	119

17.	Correlation between cytology and colposcopy		
	before treatment (Belfast group)	• •	109
18.	Correlation between cytology and colposcopy		
	hafara treatment (gains and)	· •	109
19.	Correlation between cytology and histology		
	before treatment (Belfast group)	•	110
20.	Correlation between cytology and histology		
	hafana haasimaa /ost saasa	•	110
21.	Relationship between histology and colposcopy		
	(3elfast group)	• •	111
22.	Relationship between histology and colposcopy		
	(Coire green)	• •	111
23.	Complications of laser therapy	• •	113
24.	Relationship between type of treatment and		
	cervical cytology at first follow-up visit at		
	2 months	•	117
25.	Relationship between type of laser treatment		
	and colposcopy at first follow-up visit at		
	2 months	• •	117
26.	Relationship between type of laser treatment		
	and histology at follow-up visit at 2 months		117
27.	Relationship between the severity of the lesion	n	
	and success of laser therapy	•	120
28.	Results of follow-up after laser treatment by		
	smear		120
29.	Results of follow-up after laser treatment by		
	1		120
30.	Results of follow-up after laser treatment by		
	histology	•	121
31.	Number of patients requiring re-treatment .	•	122
32.	Pregnancy after laser therapy	• •	123
33.	Reported success rates of CO2 laser therapy		

INTRODUCTION

INTRODUCTION

One of the essential responsibilities of the gynaecologist is to detect neoplasia of the female genital tract at the earliest possible opportunity and to institute appropriate treatment.

The position of the uterine cervix and its easy accessibility for examination and screening is of great advantage. This also puts the cervix in a position of great risk, being exposed to infection and carcinogenic agents. It is well established that cervical carcinoma is a sexually-transmitted disease.

Cervical intra-epithelial neoplasia and micro-invasion is a preclinical disease. Cervical screening by Papanicolaou (PAP) smear is the only practical method nowadays to identify abnormal epithelium. This brings the disease into light, when treatment can be offered. Creasman and Weed (1980) have stated that cervical cancer could be an entirely preventable malignancy if, in fact, all females were screened adequately, but unfortunately only 75 per cent of adult females take advantage of this simple and relatively painless procedure.

The implication of the apparently prolonged natural history of the disease and the highly localised nature of the lesion in most cases did not receive clinical application until the widespread application of colposcopy and conservative treatment, when Feldman et al (1978), and many others, found that there was an increase in cervical intra-epithelial neoplasia in young women early in their reproductive careers.

Conservative therapy, electrocautery, electrodiathermy, cryosurgery and cervical conization have been utilized to destroy the lesion. These procedures may be associated with scarring which may interfere with follow-up with the colposcope, as the transformation zone extends high up into the endocervical canal. There are reports of recurrent disease of greater severity developing after cryosurgery.

Carbon dioxide laser therapy has been proposed as an alternative remedy for these lesions. The laser is theoretically an ideal modality because of its precision in destroying the lesion without subsequent scarring.

AIM OF THE WORK

AIMS OF THE STUDY

The need for ambulatory methods of treatment for cervical intra-epithelial neoplasia is apparent. This is especially so where there is increasing incidence and prevalence of the lesion in young women, most of whom have not started or have not completed their families. In addition, limited funds, together with rapidly escalating costs of hospitalization and services, urged the need to seek an effective method of treatment which was simpler and less costly than hysterectomy or conization.

Colposcopically-directed carbon dioxide laser was used in this study to assess its effectiveness in the treatment of different grades of cervical intra-epithelial neoplasia. In the meantime, a correlative study between cytological, colposcopical and histopathological results have been assessed.

This study reports a correlative study between cytologic, colposcopic and histopathologic findings in patients who were referred because of abnormal cytology and who were deemed suitable for laser treatment.

Colposcopically-directed carbon dioxide laser was used in selected patients to assess its effective ness in different grades of disease. The cyto-epithelial changes and colposcopic findings after treatment were assessed and followed-up. The patients' age, parity and age at the start of sexual activity and smoking habits were also investigated in relation to the lesion.

REVIEW OF LITERATURE

HISTOLOGY AND CYTOLOGY OF THE ADULT CERVIX

Novak and Woodruff (1979) stated that the uterine cervix is the relatively narrow inferior segment of the uterus. It is differentiated into two segments, namely the portio or ectocervix, that area covered by stratified squamous epithelium, and the endocervix, lined by high columnar immus—secreting elements.

The ectocervix is derived from the invading epithelium of the urogenital sinus or possibly the vaginal plate epithelium of the united mesonephric ducts. The endocervix is of paramesonephric origin. Embryologically there is a definable secretory activity in the endocervical glands during late embryonic life. In addition to the epithelial elements, there is a very active stromal component, particularly beneath the stratified squamous epithelium of the Mullerian tubercle. There are two clearly defined types of cervical epithelia.

I. The pars vaginalis protruding into the vagina is lined by stratified squamous non-keratinising epithelium similar to that lining the vagina. The stratified epithelium normally does not demonstrate cornification, although if the cervix is prolapsed, it may become keratinised and skin-like.

Cartier (1977) described the squamous epithelium of the ectocervix. It measures about 0.5 mm thick. It is separated from the underlying connective tissue by reticular basement membrane. Stromal papillae project into the epithelium, not extending beyond its deep third. The epithelium includes 15 to 20 layers of cells, the superficial of which undergo maturation from the deep layers towards the surface, characterised