INFLUENCE OF GENERATING UNITS CONTROL

ON POWER SYSTEM STABILITY

THESIS

SUBMITTED TO THE

FACULTY OF ENGINEERING
AIN SHAMS UNIVERSITY

Вy

Eng. Fahim Ahmed Khalifa

FOR

THE (Ph. D.) DEGREE

in Electrical Engineering (Power & Machines)

SUPERVISED BY :

Prof. Dr. A.K. EL KHARASHI

Prof. Dr. M. A. L. BADR

1986

EXAL INERS

<

- Prof. Dr. G.S. Hope
 Prof. and Head of the Dept.
 of Electrical Engineering
 University of Calgary
 Calgary Alberta
 Canada.
- Prof. Dr. Ahmed M. El Arabaty
 Prof. and Head of Electrical
 Power & Machines Dept.
 Faculty of Engineering
 Ain Shams University
 Cairo Egypt.
- 3. Prof.Dr. Ali K. El-Kharashi (Supervisor)

 Electrical Power & Machines Dept.

 Faculty of Engineering

 Ain Shams University

 Cairo Egypt.
- 4. Prof.Dr. M.A.L. Badr (Supervisor)

 Electrical Power & Machines Dept.

 Faculty of Engineering

 Ain Shams University

 Cairo Egypt.

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude to Prof. DR. Mohamed Abdellatif Badr for suggesting the topic of this research and for continuous guidance and encouragement throughout the work. His ideas of combining a PID controller with adaptive techniques and his suggestions during the development of control algorithm have enhanced the work to attain this standard.

The author also wishes to express his thanks to Prof. Dr. Ali Kamel EL-Kharashi for his supervision and steadily follow up.

The author thanks his wife and sons for the good family atmosphere which helped in completing this research.

ABSTRACT

The thesis presents a study of the control and stability of a synchronous generator connected to an infinite bus through two parallel lines local load representing the interconnection of large power system. The study includes the application of different techniques of automatic voltage regulators and speed governing systems synchronous machines. The development of digital equipment has made it possible to apply efficient techniques of digital controllers as automatic voltage regulators or as speed governors for the synchronous machines.

proportional-plus-integral-plus derivative The (PID) digital automatic voltage regulator(DAVR) presents an effective means for improving the transient and dynamic performances of the synchronous machine when equipped with this kind of DAVR. The main feedback signal for such a DAVR which controls the excitation voltage is the terminal voltage of the synchronous generator. This terminal voltage is sampled and intro-DAVR at constant intervals. duced to the The DAVR receives this signal, converts it into digital, computes a control signal bу means of a programmed algorithm, converts the control signal into a voltage and delivers it to the excitation system.

In addition, other stabilizing signals proportional to the derivative of power angle, output power, power angle and armature current were used. A weighting factor is assigned for each one of these

signals and the input signal to the controller is the weighted sum of different combinations of these signals.

Different control strategies are considered in this study. These are (1) keeping weighting coefficients constant or (2) dynamically changing them according to the variances of their respective signals.

One of the problems in the application of PID-DAVR is the tuning of this kind of regulators i.e the best selection of their parameters (controller gain, integral time, derivative time). The modern trends in computer technology is to use adaptive control system as AVRs or governors. One of these controllers is the self-tuning regulator. In this case the parameters of the regulator are not held constant but are computed and updated every sampling instant.

In the current study these types of AVR's and speed governors are examined. The study is performed using the facilities of a high-speed digital computer. A power system has been chosen and the mathematical model which represents it was derived. The model consists of a set of first order differential equations written in the state-space form. The equations of the digital controllers are derived in the form of difference equations. The combined mathematical model has been solved on the computer.

An interactive computer program for the simulation of this system was designed and written for the computer. It performs the modeling of the system and it is capable of handing nine different transient and dynamic types of variations on the power system.

The transient and dynamic operation of the power system when the machine was equipped with (a) constant parameters, constant weighting coefficients DAVR (b) constant parameters, dynamically changing weighting coefficients DAVR and (c) self tuning regulators are examined.

Also the dynamic performance of the machine has been checked when the turbine was governed by a PID digital controller. The transient and dynamic response of the machine under different initial loading and types of variations are computed.

Results are compared to both theoritical and experimental results already published in literature sources.

(iii)

CONTENTS

LIST OF	г зүмвс	DLS]
CHAPTE	R 1	INTRODUCTION	3
	1.1	GENERAL	3
	1.2	THE MATHEMATICAL MODELS USED IN	
		STABILITY STUDIES	6
	1.2	2.1 The classical model of synchronous	
		machines	6
	1.2	2.2 Modern synchronous machine models.	7
	1.2	2.3 Saturation treatment	8
	1.2	2.4 Loads modeling in stability studies	9
	1.2	.5 Excitation and speed governing	
		systems	10
	1.2	.6 Power system representation	11
	1.3	EFFECT OF EXCITATION CONTROL ON POWER	
		SYSTEM STABILITY	11
	1.3	.1 Supplementary stabilizing signals	13
	1.3	.2 Digital regulators	15
	1.3	.3 Selection of the sampling period .	16
	1.3	.4 Tuning PID digital controller	17
	1.4	EFFECT OF GOVERNOR CONTROL ON POWER	
		SYSTEM STABILITY	21
	1.5	THE THESIS OBJECTIVES	24
CHAPTER	2	MATHEMATICAL MODEL OF THE	
		POWER SYSTEM	26

(iv)

	2.1	THE SYSTEM UNDER CONSIDERATION	26
	2.2	SYNCHRONOUS MACHINE MODELING	26
	2.	2.1 The voltage equations	29
	2.	2.2 The torque equation	33
	2.3	THE SATURATION TREATMENT	37
	2.4	THE POWER SYSTEM MODEL	41
	2.5	THE EXCITATION SYSTEM, AVR AND SPEED	
		GOVERNOR	44
	2.5	5.1 The exciter	44
	2.5	5.2 The PID voltage regulator	45
	2.5	5.3 Speed governor	50
	2.6	THE STATE-SPACE MODEL FOR THE	
		COMPLETE SYSTEM	54
	2.7	THE CONTROL STRATEGY	57
СНАРТЕК	3	THE COMPUTER PROGRAM	60
	3.1	INTRODUCTION	60
	3.2	INITIALIZATION OF PROGRAM	60
	3.3	SELECTION OF EXCITATION SYSTEM AND	
		AVR	62
	3.4	THE WEIGHTING COEFFICIENTS	63
	3.5	THE SPEED GOVERNOR	64
	3.6	THE SATURATION TREATMENT	65
	3.7	UPDATING THE COEFFICIENTS MATRICES	66
	3.8	SIMULATION OF SYSTEM DISTURBANCES	67
	3.9	SOLUTION OF DIFFERENTIAL EQUATIONS	69
	3.10	RECORDING THE RESULTS	70

CHAPTER	4 CONSTANT PARAMETERS PID AUTOMATIC	
	VOLTAGE REGULATOR - COMPUTER	
	RESULTS	72
	4.1 EFFECT OF DAVE ON SYNCHRONOUS	
	MACHINE TRANSIENT AND DYNAMIC	
	STABILITY	72
	4.1.1 Short circuit at local load	
	terminals	75
	4.1.2 Short circuit at mid-point of one	
	transmission line with successful	
	automatic reclosure	80
	4.1.3 Short circuit at mid-point of one	
	transmission line with unsuccessful	
	automatic reclosure	83
	4.1.4 Short circuit at the mid-point of	
	one transmission line with succes-	
	sful reclosure and delayed operat-	
	ion of circult breaker	87
	4.1.5 Sudden increase in mechincal torque	91
	4.1.6 Sudden increase in local load	91
4	.2 EFFECT OF FEEDBACK STABILIZING SIGNALS	
	IN DAVR ON SYNCHRONOUS GENERATOR STABILITY	94
	4.2.1 Short circuit at local load terminals	97
	4.2.2 Step increase in local load	100
4	-3 EFFECT OF THE SPEED GOVERNOR WITH A	
	DIGITAL PID CONTROLLER ON MACHINE	

(vi)

		DYNAMIC STABILITY	103
	4.	3.1 Step increase in mechnical torque	105
	4.	3.2 Step increase in local load	105
CHAPTER	₹ 5	SELF TUNING PID VOLTAGE REGULATOR	108
	5.1	SELF-TUNING REGULATOR (STR)	111
	5.2	SYSTEM IDENTIFICATION	113
	5.3	THE CONTROL STRATEGY	116
	5.3	3.1 The self-tuning PID controller(ST PID)	116
	5 • 3	3.2 The weighting coefficients	
		variations	121
	5.4	THE COMPUTER RESULTS	121
	5.4	1.1 Influence of ST PID regulator	
		on synchronous generator dynamic	
		stability	122
	5.4	.2 Effect of ST PID regulator on	
		machine transient stability	130
	5.4	.3 Effect of digital PID governor	
		on synchronous generator dynamic	
		stability	140
CHAPTER	6	COMPARATIVE STUDY OF DIGITAL	
		VOLTAGE REGULATORS	144
	6.1	GENERAL	144
	6.2	DIGITAL PID REGULATORS WITH CONSTANT	
		GAINS AND WEIGHTING COEFFICIENTS	144

(vii)

	6.2	2.1 Transient stability conditions	144
	6.2	2.2 Dynamic changes	147
	6.3	DIGITAL PID REGULATOR WITH CONSTANT	
		GAINS AND DYNAMICALLY CHANGING	
		WEIGHTING CEFFICIENTS	151
	6.4	SELF-TUNING REGULATORS	154
CONCLUSI	CONS	• • • • • • • • • • • • • • • • • • • •	155
REFERENC	CES	•••••	160
APPENDIX	. A	PARAMETERS OF THE POWER SYSTEM	
		COMPONENTS	171
	A.1	Synchronous Machine Parameters in	
		P U	171
	A.2	Power System	171
	A.3	Governor	171
	A.4	Exciter	171
APPENDIX	В	DYNAMIC VARIATION OF THE WEIGHTING	
		COEFFICIENTS	172
APPENDIX	C	PARAMETER ESTIMATION	175
APPENDIX	Đ	THE PID CONTROLLER ALGORITHM	179

(viii)

LIST OF SYMBOLS

2

H Inertia constant

I,i Current

IRF Reference current

i First derivative of current

1KD,1KQ Damper winding d and q-axis currents

respectively

ip Field current

idel,ide2 Current d-axis component in transmission

line No.1,2 respectively

 i_{dL}, i_{qL} d and q-axis currents in local load

respectively

iqel,iqe2 Current q-axis component in transmission

line No.1,2 respectively.

K Gain of real PID regulator algorithm for

speed governor

K_A Amplifier gain of the exciter

K_C Gain of the speed control system of speed

governor

K_F Gain of exciter stabilizing circuit

Kp Gain of the ideal PID regulator algorithm

K_S Magnetic saturation coefficient

K₁ Gain of real PID regulator algorithm for

AVR

L Inductance

1 Leakage inductance

LKD, LKQ Damper winding d and q-axis inductances

respectively

L_F Field winding inductance

 L_d , L_a Synchronous machine d and q-axis induc-

tances respectively.

 $l_{
m p}$ Potier inductance

P Output power

PRF Reference output power

r Resistance

rkD,rkQ Damper winding d and q-axis resistances

respectively.

r_F Field winding resistance

Laplace transform operator S Second s Transient period Time t Amplifter time constant of the exciter T_A Time constant of the speed control system $T_{\mathbf{C}}$ of speed governor Derivative time of the ideal PID regula- $T_{\rm D}$ tor algorithm T_{F} Time constant of exciter stabilizing circuit Integral time of the real PID regulator T_{G} algorithm for speed governor Integral time of the ideal PID regulator T_T algorithm Time constant of steam system of the T_{S} speed governor T_{SM} Sampling period Derivative time of the real PID regulator T_{D1} algorithm for speed governor. Mechanical torque T_{m} Integral time of the PID regulator Τı algorithm for AVR T_2 Derivative time of the PID regulator algorithm for AVR. V,v Voltage V_{RF} Reference voltage δ Power angle $\delta_{_{
m RF}}$ Reference power angle Flux linkage ψ X Rate amplitude constant Rotor speed Reference rotor speed

WRF

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The continuous growth of large interconnected power networks and the requirements of system reliability have made the problem of stability investigation of ever increasing importance. Electrical engineers, being interested in finding ways for improving system stability are obliged to develop and employ better techniques for power system control.

The power system stability may be defined as that property of the network which enables the synchronous machines of the system to respond to a disturbance from a normal operating condition so as to return to a condition at which their operation is again normal. Stability studies are primarily concerned with variations in speeds and rotor positions. They focus attention on the transmission network. since is concerned more than the power plant or controls, with the power transfer between generators required to maintain synchronism. Stability studies are well reported in many technical sources [1-7] . These stability studies are traditionally classified into three types depending upon the nature and order of mag-