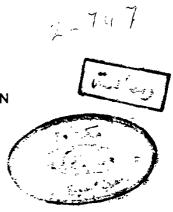
SOME CHANGES THAT OCCUR THROUGH THE PROCESSING AND STORAGE OF FISH

$\mathbf{B} \mathbf{y}$

Mohamed Farag Mohamed Nasr Khallaf

B.Sc. (Food Technology) Ain Shams Univ. 1977 M.Sc. (Food Technology) Ain Shams Univ. 1982

THESIS


SUBMITTED IN PARTIAL SATISFACTION

OF THE REQUIREMENTS

OF THE (Ph. D.) DEGREE

IN

Food Technology

FACULTY OF AGRICULTURE AIN SHAMS UNIVERSITY Dept. of Food Science

1986

APPROVAL SHEET

Name: Mohamed Farag Mohamed Nasr Khallaf.

Title: Some Changes That Occur Through The Processing

And Storage Of Fish.

This Thesis has been approved by:

Prof. Dr. -

Prof. Dr.

Prof. Dr. Ela Dallas

Committee in charge

Date 31 / 7/1986.

ACKNOWLEDGEMENT

I fail to find the proper words to express my great indebtdness to all who had supervised and planned the thesis:

Prof. Dr. YEHIA M. HASSAN, Governor of Menofia Governorate.

Prof. Dr. M. AMIN ABD ALLAH, Professor of Food Sci., Fac. of Agric., Ain Shams Univ.

They were most generous with their knowledge, advice and time in guiding me throughout the whole study.

Deepest thanks to Dr. M.H.O. EL KALYOUBI,
Associate Prof. of Food Tech., Fac. of Agric., Ain
Shams Univ., Food Sci. Dept., for his continual encouragement. My appreciation is extended to Dr. R.M.
EL MAHDY, Associate Prof. of Food Tech., Fac. of Agric.,
Ain Shams Univ., Food Sci. Dept., for his valuable
suggestions.

Last, but not least, my gratitude to Dr. A.A. ABOU ARAB, Lecturer of Food Tech., Fac. of Agric., Ain Shams Univ., Food Sci. Department, all the staff members of the Food Sci. Dept., Fac. of Agric., Ain Shams Univ., and Mr. Ezzat Zahran, Director of El-Zawia Fish Farm in Kafr El-Sheikh Governorate for his kind helps during sampling.

DEDICATION

To the source of tenderness which disappeared

To my mother's spirit in the otherworld

$\underline{\mathtt{C}} \ \underline{\mathtt{O}} \ \underline{\mathtt{N}} \ \underline{\mathtt{T}} \ \underline{\mathtt{E}} \ \underline{\mathtt{N}} \ \underline{\mathtt{T}} \ \underline{\mathtt{S}}$

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	 5
I: MAJOR CONSTITUENTS AND PHYSICOCHEMI-	
CAL PROPERTIES OF FISH TISSUES	5
a- Moisture Content	5
b- pH Value	<i>5</i> 8
c- Refractive Index of Eye Fluids (R.I.)	11
d- Optical Density of Gills Extract	11
e- Total Lipid Content	12
f- Thiobarbituric Acid Value (TBA)	16
g- Total Protein Content	21
h- Effect of Storage at Low Temperatures	
on Fish Proteins	23
II: CHROMATOGRAPHIC ANALYSIS AND IDENT-	
IFICATION OF FISH LIPIDS	26
a- Fatty Acid Composition of Fish Lipids	26
b- Effect of Storage at Low Temperatures	
on Free Fatty Acids	27
c- Fish Phospholipids	34
i- Total phospholipids content	34
ii- Fatty acid composition of phosph- olipids	35
iii- Effect of storage at low tempera- tures	
V 44.4. Q 70	38
d- Unsaponifiable Matter of Fish Lipids	40

	Page
III: AMINO ACID CONSTITUENTS AND ELEC-	
TROPHORETIC PROFILES	43
 a- Amino Acid Composition in Fish Proteins b- Effect of Storage at Low Temperatures 	43
On Fish Amino Acide	 47
c- Electrophoretic Identification of Fish Proteins	48
d- Effect of Storage at Low Temperatures on Electrophoretic Patterns	51
MATERIALS AND METHODS	53
A- MATERIALS	53
- Packing and freezing process	53
B- ANALYTICAL METHODS	.
1- General View Points	54 54
a- Moisture content	54 54
b- pH value	54 54
c- Refractive index of eye fluids	54 55
d- Optical density of gills extract	55
2- Lipid Analysis	55
a- Total lipid content	55
b- Thiobarbituric acid value (TBA)	56
c- Extraction of total lipids	56

	Page
c.1) Isolation of phospholipid fractions	
c.2) Determination of unsaponi- fiable matter	57
c.3) Gas chromatographic analy-	57
SIS	58
acids	58
 Identification of unsa- ponifiable matter 	60
3- Protein Analysis	61
a- Total protein content	61
b- Electrophoretic identification	61
c- Identification of amino acids	63
c.1) Cystine assay	64
c.2) Methionine determination	64
c.3) Tryptophan analysis	65
d- Chemical score	65
e- Essential amino acids index (EAAI)	66
f- Biological value (B.V.)	66
g- Protein efficiency ratio (PER)	66
RESULTS AND DISCUSSION	
THE CHIE AND DISCUSSION	67
PART I: MAJOR CONSTITUENTS AND PHYSICOCHE-	
MICAL PROPERTIES OF FISH TISSUES	67
PART II: CHROMATOGRAPHIC ANALYSIS AND IDEN-	
TIFICATION OF FISH LIPIDS	83

	Page
l- Free Fatty Acids	G2
a- Saturated free fatty acids	83
b- Unsaturated free fatty acids	83 90
2- Phospholipid Fatty Acids	102
a- Saturated phospholipid fatty acids	102
a.l) Common carp fish	102
a.2) Mullet fish	106
b- Unsaturated phospholipid fatty acids	770
b.1) Common carp fish	110 110
b.2) Mullet fish	110
3- Unsaponifiable Matter	119
PART III: AMINO ACID CONSTITUENTS AND PRO-	
TEIN EVALUATION	124
1- Identification of Amino Acids	124
a- Common carp fish b- Mullet fish	_124
	127
2- Electrophoretic Identification	130
a- Common carp fish	131
b- Mullet fish	134
3- Protein Evaluation	138
SUMMARY AND CONCLUSSION	143
REFERENCES	157
ARABIC SUMMARY	101
	_

INTRODUCTION

/

INTRODUCTION

Fish is known to be of great nutritional value for human consumption as its protein has a high biological value and contains all the essential amino acids. It is also a satisfactory source of lipids with the presence of the essential fatty acids and minerals especially magnesium, phosphorus, iron and copper.

Over the past several years seafood sales have increased, primarily due to greater awareness of health and nutrition as well as the relative cost of fish with respect to meat and poultry; (Campbell 1982). These elevated sales have been mostly for traditional species because of the lack of consumer acceptance for other species.

Tapping of the wealth based on fish sources has become an urgent need for the survival of the human race. Most nations planned for expanding their fish catching power through sending fishing fleets with mother ships and floating factories into virgin areas of the globe's vast ocean. Controlled fish cultivation is gaining major significance in many lands. Man-

made reservoirs are being exploited for fish raising also on a large scale. With regard to fish farms, the need for a comprehensive resource management as well as wise and efficient utilization have become paramount in face of the mounting population pressures. Even the organized cultivation of the seas, mariculture, now looms as an inevitable and intriguing task for future generations. All these circumstances are contributing to bringing into focus the world-wide importance of fish, shell-fish and other aquatic organisms suitable for food and feed; (Borgstrom 1961).

In Egypt, and due to the lack of large capital investments for realizing fish catch overseas, a tendency towards buildup fish farms were considered. Fish production (in Egypt) amounted to about 300,000 tons and The General Authority For Fish Resources Development are giving much attention towards fish production, processing and distribution of carp and mullet fish.

Carp fish was imported from South

East of Asia and farmed successfuly in Egypt.

The production of carp farms usually distribute according to marketing grades depending on its weight and size. Mullet fish was also farmed in governmental fish farms with carp and bolti fish. It has drawn attention because of rapid quality changes during shipping and storage.

Deterioration in the quality of fish muscle had frequently occurred in lipids and proteins during frozen storage as a result of undesirable technological processes; (Sikorski 1978, 1980). These changes are of great commercial importance since they determine storage life of frozen seafoods. However, lipids and proteins are two groups of the various components that affect edible quality attributes and lipids are most important since they may undergo several deteriorative reactions during processing and storage, e.g., hydrolysis and oxidation. These can adversely affect flavor, odor, color and texture.

The following points had been researched within the scope of such study:

- Major constituents and physicochemical properties of common carp and mullet fish after freezing and storage at -18°C for 8 months.
- Chromatographic analysis and identification of fish lipids changes.
- 3. Amino acid constituents and protein evaluation.

However, these previous aspects were also considered as a suggested technique for predicting storage period of the investigated fish samples.

REVIEW OF LITERATURE

