SOMATOMEDIN

IN

PROTEIN ENERGY MALNUTRITION

THESIS

Submitted for Partial Fulfilment of a Master Degree of PEDIATRICS

SUPERVISORS

Prof. Dr. SAADIA ABD EL-FATTAH
Professor of Pediatrics
Faculty of Medicine
Ain Shams University

Dr. KARIMA ABD EL-KALIK
Assistant Professor of Pediatrics
Faculty of Medicine
Ain Shams University

1986

ACKNOWLEDGEMENT

I feel greatly indebted to Professor Saadia Abd-El Fattah, Professor of Pediatrics, Ain Shams University for her constructive supervision, generous help, humanity and encouragement.

I would also like to express my deep gratitude to Dr. Karima Abd El Khalik, Assistant Professor of Pediatrics, Ain Shams University for her suggestion, kind cooperation and her great guidance given throughout the work.

ABBREVIATIONS

SM Somatomedin.

HGH Human growth hormone.

MSA Muliplication stimulating activity.

IGF Insulin growth factor.

NSILA Non suppressible insulin like activity.

NSILA-P Non suppressible insulin like activity precipitate.

NSILA-S Non suppressible insulin like activity soluble.

RNA Ribonucleic acid.

DNA Deoxyribo nucleic acid.

NGF Nerve growth factor.

EGF Epidermal growth factor.

S²⁵ Radioactive sulfate.

I¹²⁵ Radioactive iodine.

C.S.F Cereberospinal fluid.

PEN Protein energy malnutrition.

mol.wt Molecular weight.

```
< Less than.
```

> More than.

GIT Gasterointestinal tract.

WHO World Health organization.

CONTENTS

	Page
Introduction and aim of the work	
Review	
Somatomedin	1
Discovery & definition	1
Isolation of SM	3
Levels in plasma	5
Sites of production	12
Actioms of somatomedin	15
Somatomedin inhibitors	20
Factors influencing growth and development	24
Somatomedin activity & fetal growth	39
Role of SM in growth	41
Regulation of somatomedins	46
- Hormonal regulation	47
- Nutritional regulation of somatomedin	54
- Regulation by quantity and compostion of diet.	56
Somatomedin in C.S.F.	

$\mathrm{P}_{\mathcal{E}}$	age
Measurments of somatomedin	57
Protein energy malnutrition	
- Introduction and aetiology	'O
Classification	5
Clinical presentation 8	0
Intection and Immunity 8	8
Endocrine system	0
Haemopoetic system 9	3
Pathology	7
Diagnosis	2
deasurement of SM in PEW 105	õ
Prognosis	7
Preatment	3
Diatery therapy	
ummary	
deferences	
rabic Summary	

INTRODUCTION

&

AIM OF WORK

INTRODUCTION

and

AIM OF THE WORK

Growth and development especially in early life are influenced by many factors among them are hormones nutrition and genetic factors.

Hormones are found to play a major role in growth mainly growth hormone of pitutary gland.

Growth hormone stimulates linear growth indirectly by formation of secondary growth promoting factors known as sulfation factor or somatomedin, a family of GH dependent peptidemitogens.

Although serum somatomedin concenterations usually exhibit a strict growth hormone dependence, but in cases of protein-energy malnutrition, SM activity is reduced despite of increased levels of GH.

This discordance suggests that serum SM is also highly dependent on nutritional status.

The aim of this essay is to study the effect of protein and energy intake on somatomedin activity and the effect of balanced diet on it.

This essay also throw light on somatomedin discovery, actions, regulation, role in growth and measurments with brief account on protein energy malnutration.

REVIEW OF LITERATURE

SOMATOMEDINS

Historical review

Growth hormone of pitutary origin has been recognized over 50 years, as a factor critically important for growth. Recognizing that growth involves prolifration of cartilage at the epiphysial plates Kibrick et al.(1941), found that marrow epiphysial plates in hypophysectomized rates became wider after growth hormone was given in vivo. Cartilage metabolism could be measured by the incorporation of radio active sulfate into cartilage matrix.

Discovery and definition:

In studies of the mechanism by which growth hormone (CH) promotes growth Salmon & Daughaday(1957) observed that hypophysectomized rate costal cartilage exposed to CH in vitro had no change in cartilage sulfate uptake, and addition of serum from CH deficient hypophyectomized animals also had little effect. Serum from animal

pretreated with GH did produce cartilage growth. From these observations the hypothesis was formulated that growth hormone promoted skeletal growth indirectly through generation of serum factor or factors that directly cause cartilage proliferation called sulfation factor (Salmon & Daughaday 1957).

Subsequent studies have indicated that normal plasma contains an unknown number of growth hormone dependent substances which stimulate cellular events concerned with the growth of both extraskeletal and skeletal tissues. These substances have many insulin like metabolic action in vitro, although immunologically distint from insulin. As the result of these and other studies, the original name (sulfation factor) became too constrictive. The more open term sometomedin was introduced to include all growth hormone dependent substances in plasma which stimulate growth in responsive tissues. The name comes from "Somato" which points to hormonal relationship to somatotrophin and (Medin) to indicate that it mediates the action of somatotrophin Daughaday et al, 1972).

Isolation of somatomedins

The growth promoting actions of GH are mediated through these sulfation factors somatomedins. For a peptide to be considerd as somoatomedin it must fulfil the following criteria:

- . Its serum concenteration must be growth hormone dependent.
- . It must possess insulin-like actions in the extraskeletal tissues.
- . It must promote the incorportion of sulfate into proteoglycans of cartilage.
- . It must stimulate multiplication of certain types of cultured cells. (Underwood and D'Ercole 1980).
- . Five substances meeting these criteria have been discribed:
- Somatomedin A SM-A
- Somatomedin C SM-C
- Insulin like growth factor I and II (formerlyreferred to as non suppressible insulin like activity or (NSILA).

. and Multipication stimating activity MSA.

Somatomedin-B (SM-B) although exhibits some dependence on GH, it does not stimulate cartilage and therefore not included.

Since tissue extracts generally have little somatomedin activity, these SMs have been isolated from large volume of plasma or serum. MSA has also been obtained from liver cell culture.

The following table obtained by Phillips & Sellin, (1980) show the isolated polypeptide and it's molecular weight, isoelectric point and the source:

Product	M.W.	Р.Н.	Source
SM - A ₁	7.000	Neutral	Human plasma.
SM - A ₂	7.000	Neutral	Human plasma.
SM - C	7.500	Basic	Human plasma.
IGF - 1	7.549	Basic	Human plasma.
IGF - 2	7.471	Neutral	Human plasma.
MSA	10.000	Neutral	Liver-cell cultre.