16 /KX)]

BREAST MASSES Diagnosis and Surgical Management

ESSAY

Submitted for Partial Fulfilment of the

MASTER DEGREE

1N

GENERAL SURGERY

ΒY

Ibrahim Morsy Laban

M.B. B. Ch.

Under Supervision of :

Prof. Dr. Rifaat Kamel

Professor of General Surgery Ain Shams Faculty of Medicine

AIN SHAMS FACULTY + F MEDICINE
AIN SHAMS UNIVERSITY

1985

To My Parents

CONTENTS

		Page
I.	INTRODUCTION AND AIM OF THE WORK	1
II.	ANATOMY OF THE BREAST	
	- Topography of the breast	7
	- Glandular structure	10
	- Vascular supply ··· ··· ··· ···	11
	- Innervations	14
	- Lymphatics	15
	- Nipple	19
TTT.	PHYSIOLOGY OF THE BREAST	
	- Hormones-concerned with development of the breast.	23
	- Development of the mammary gland	2 6
	- Hormone control of nipple growth	28
TV.	EARLY DETECTION OF A BREAST MASS	29
V.	PARACLINICAL INVESTIGATIONS	33
	- Mammography	36
	- Thermography	_
	- Xeroradiography	39
VI.	DIAGNOSIS OF A BREAST MASS	
	- Biopsy	42
	- Biopsy based on nipple discharge	43
	- Biopsy based on other signs of cancer	
	- Indications of fine needle aspiration	45
	- Needle core biopsy	46
	- Incisional and excisional biopsies · · · · · · · · · · · · · · ·	47
	- Frozen-section diagnosis	4 8
/II.	TUMOUR MARKERS	
•	- Value of tumour markers in breast cancer	50
	- Carcino-embryonic antigen (CEA)	51
	- Serum Fucose-Protein ratio (SF/P)	55
	- Hydroxy proline	56
	- Hormone receptors	

		Page
VIII.	PATHOLOGY OF THE BREAST MASSES	
	- Classifications	60
	- Plasma cell mastitis (Duct ectasia)	63
	- Mammary dysplasia	64
	- Sclerosing adenosis	68
	- Benign tumours of the breast	69
	- Fibroadenoma	71
	- Intraductal papilloma	73
	- Adenoma of the nipple	74
	- Cystosarcoma phylloides	7 5
IX.	MALIGNANT NEOPLASMS	
	- Classifications	77
	- Lobular carcinoma in situ (LCIS)	78
	- Intraductal carcinoma (DCIS)	80
	- Infiltrating duct carcinoma (IDC)	81
	- Infiltrating lobular carcinoma (ILC)	8 2
	- Mucous carcinoma	83
	- Medullary carcinoma	84
	- Paillary carcinoma	85
	- Tubular carcinoma	85
	- Adenoid cystic carcinoma	8 6
	- Secretory (juvenile) carcinoma	86
	- Apocrine carcinoma	87
	- Metaplastic carcinoma	87
	- Sarcoma of the breast	88
	- Malignant lymphoma of the breast	89
	- Modes of spread of mammary carcinoma	89
	- Staging of mammary carcinoma	92
	- Prognosis of mammary carcinoma	98
X.	MANAGEMENT OF BREAST MASSES	
	- Potentially malignant masses	100
	- Management of breast cancer	103
XI.	SUMMARY	114
XII.	CONCLUSION	139
XIII.		143
	ARARTC SIMMARY	

ACKNOWLEDGMENT

"First and Foremost, thanks are due to God".

The credit of bringing this work to light goes to the masterly teaching of our Professor Dr. Khalid Abd El-Ghafar, Professor and Head of Department of General Surgery, Ain Shams University who encourages and supports the post-graduate teaching.

Due thanks should also extended to our Professor Dr. Rifaat Kamel, Professor of General Surgery, Ain Shamus University. I would like to thank him for his unfailing efforts and guidance in refining most of the data given hereby, and for his great lot of zeal given to this piece of work, witty hints and the data flavour he made this essay informations, so I wish to express a particular gratitude to this sincere guidance.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

The chief complaint and the most common clinical presentation of the breast lesions is a mass. The carcinoma of the breast comes as the second common cause of the five lesions which produce a breast mass. They are namely, fibrocystic disease, cancer, fibroadenoma, intraductal papilloma and duct ectasia.

One of every 11 women, or about 9%, will develop breast cancer during her normal life expectancy, this is not a chance event that occurs randomly throughout the population. There is a group of patients who are at increased risk of developing breast cancer.

Breast cancer does not seem to be due to a single factor but to a constellation of risk factors, including genetic predisposition, adverse hormonal milieu, immunologic incompetence, carcinogen exposure and adverse personal and demographic factors.

Beyond the obvious risk indicators, such as lump or discharge, certain factors are of major importance, namely, sex, age, family history of breast cancer, previous benign disease, precanerous mastopathy, previous cancer in one breast and adverse

hormonal milieu as related to parity.

From the hormones which help growth of the mammary gland, estrogen hormone is the most important one in the epidemiology of breast cancer, probably acting as powerful potentiator rather than as a true carcinogen. There seem to be two main types of breast cancer with different age peaks and hormone relationships. The first type occurs in the premenopausal woman, has an age peak of 45 to 49 years and seem to be related to the secretion of estradiol and estrone by the ovaries. The second type occurs in the post-menopausal woman, has its age peak at 65, and seems to be related to adrenal function which its secretions as a precuresor of estrone and pass to circulation to produce its effects.

There is a body of evidence to suggest that hypothyroidism is conductive to the development and progress of mammary carcinoma. The incidence of breast cancer increases with the length of time thyroid supplements are given and it is highest in nulliparous women.

The role of prolactin, if any, in human breast cancer is poorly understood.

According to the use of contraceptive pills and its relation to breast cancer, there might be subgroups in the population who could be adversely affected. In the subgroup of premenopausal women under 40 years of age and had a family history of breast cancer and takes the pills for 1 or more years, the incidence of cancer breast increases of three-fold.

The incidence of breast cancer also increases in the subgroup of nulliparous menopausal women who take exogenous estrogens for replacement therapy.

On the other hand, menopausal women with early first parity seem to have a decreased incidence of cancer breast with exogenous estrogen administrations. Thus the reason that exogenous estrogen administration does not seem to influence breast cancer incidence in the population as a whole may be related to that pills increases the incidence in some subgroups while it decreases in others resulting in a relatively balanced incidence.

It is of paramount importance to define patients at high risk of developing breast cancer so that all diagnostic modalities can be directed toward them.

Screening of these patients are of very importance

and essential.

Periodic examination of the breast can be done by the patient through breast self-examination after the days of menstruation end each month. 85% to 90% of breast lesions are discovered by the patients themselves. It is to be done carefully by a physician annually for the early detection and diagnosis of breast cancer in the early stage and offers a good time of surgical approach in which less morbidity and cure rates are high.

Truely, early diagnosis would be the detection of breast cancers in a preclinical stage.

Breast x-ray examinations (mammography and xerography) can detect some breast cancers in the preclinical stage 1 to 2 years before they reach the clinically palpable size of 1 cm. However, there is a false negative results of approximately 10% in diagnosing breast cancer depending on mammography alone.

Thermography although non invasive and therefore safe can not diagnose any substantial number of preclinical cancers. Depending on clinical examination alone, only about 80% of breast cancers is discovered with high positive flase results.

For the accurate diagnosis and confirmation that the lesion is benign or malignant a surgical biopsy and histologic examination must be performed.

Before any diffenitive treatment is planned certain laboratory and physical examination have become routine and generally accepted. A thorough history and a complete physical examination must accompany direct evaluation of the patient's specific complaints. A strong family history of breast cancer should alert one to the relatively high incidence of bilaterality. The patient ability to tolerate anaesthesia and surgery must be evaluated.

A battery of laboratory tests must become routine including electrocardiogram, complete blood count, postero-anterior and lateral chest radiography, blood chemistry and urine analysis. Abnormal laboratory findings may reflect the presence of metastatic breast cancer. Pulmonary opacifications may be related to metastases, tomogram of lungs verifies the condition when multiple nodules are noted bilaterally.

Abnormal blood chemistry may indicate metastases.

Elevated serum calcium levels may result from bone destruction by metastatic breast cancer. An elevated alkaline phosphatase level may be secondary to metastases in the liver or bones.

The clinician and surgeon must carefully evaluate the overall situation in order to decide on the proper course of action.

It is important to evaluate the extent of the disease and regional nodes to help in choosing the proper patient for surgical excision or radiation therapy which will decrease the morbidity and mortality of breast cancer.

In this study, stree has been made on the anatomy of the breast, physiology of the female breast, early detection of breast cancer, diagnosis of breast mass, pathology of different breast masses and their management.

The aim of the work is to diagnose breast mass with proper management to reduce the complications.

ANATOMY OF THE BREAST

TOPOGRAPHY OF THE BREAST

The normal breast in a woman extends from the second or third rib superiorly to the sixth or seventh rib inferiorly, medially from the margin of the sternum, and laterally its extent is variable. It may extend arround the lateral border of the pectoralis major through the axillary fascia into the axilla as the axillary tail of Spence (Fig. 1).

The glandular tissue of the breast may be dispersed over a considerably wider area, extending superiorly to the clavicle, laterally into the axilla, and inferiorly into the anterior abdominal wall as well as to the middle line medially.

The gland averages approximately 10 to 12 cm in length craniocaudally and 3 to 5 cm in thickness. A non-lactating breast weights approximately 200 g., a lactating breast may weigh as much as 500 g.

SKIN:

The skin of the breast contains a rich subcutaneous vascular plexus and accompanying lymphatics. The ducts of the mammary gland pass to the skin and very often lie directly in contact.

FASCIA:

The mammary gland is ectodermal in origin and

څ