

MEK

EFFECT OF SOME ENVIRONMENTAL FACTORS ON
TOMATO SEEDLINGS

By

Sayed Mahmoud Singer

B.Sc. Ain Shams University 1972

M.Sc. Al-Azhar University 1981

22714

Thesis

Submitted in Partial Fulfilment of

The Requirements For The Degree

Doctor of Philosophy

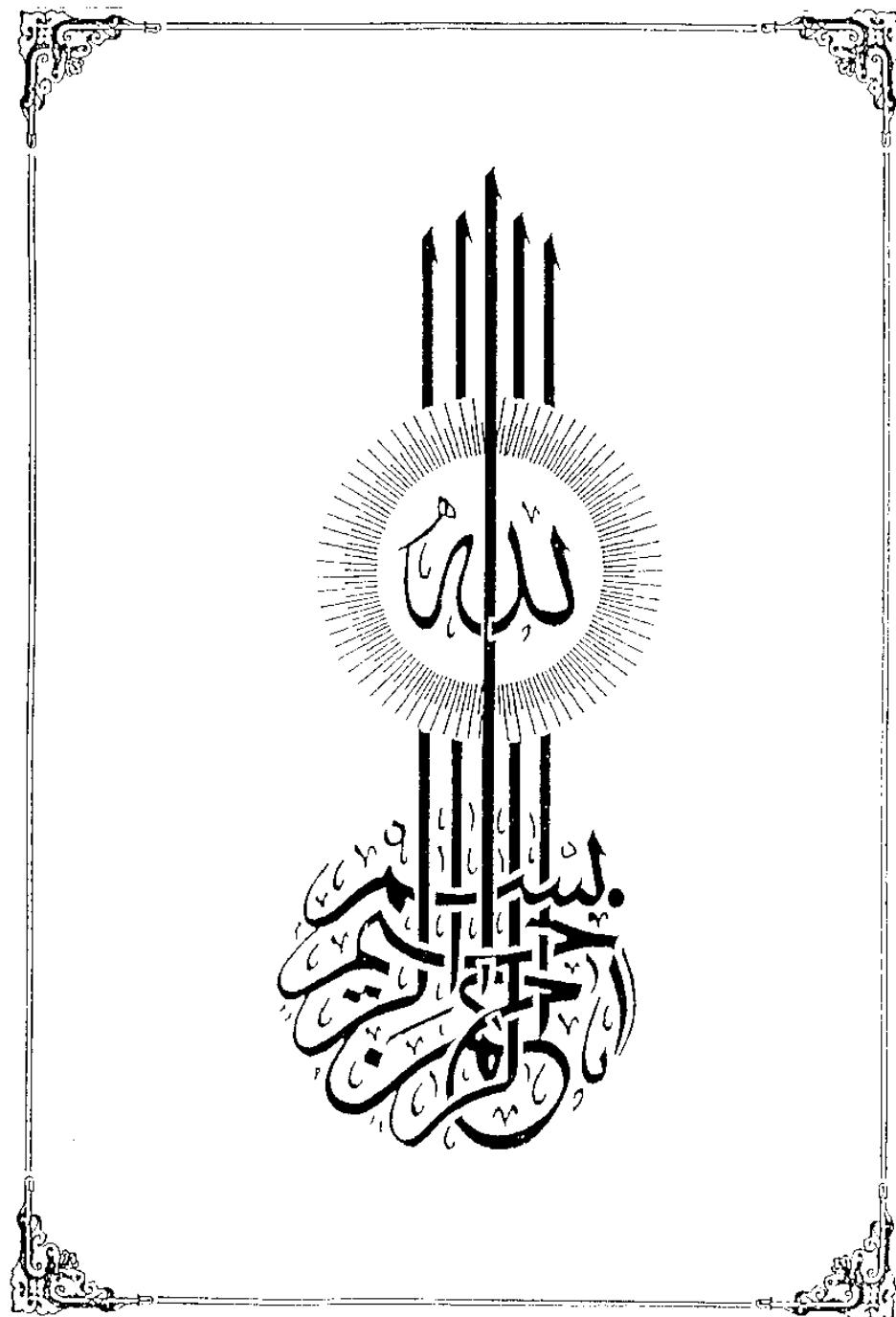
635 642
S. M

In

Vegetable Crops

From

HORTICULTURE DEPARTMENT


FACULTY OF AGRICULTURE

AIN SHAMS UNIVERSITY

(1986)

بسم الله الرحمن الرحيم

IN THE NAME OF ALLAH, THE BENEFICIENT, THE MERCIFUL.

APPROVAL SHEET

Title: *Effect of some environmental factors on tomato seedlings.*

Name : *Sayed Mahmoud Singer*

This thesis has been approved by :

Dr. S. M. Singer
Dr. B. H. El-Haggy

Committee in Charge

Date : / /1986.

CONTENTS

	<u>Page</u>
1) Introduction.....	1
2) Review of Literature.....	4
2.1 Effect of different chemical treatments for cold resistance and slight frost condition on tomato seedlings.....	4
2.1.1 The effect of CCC	4
2.1.2 The effect of sodium carbonate.....	6
2.1.3 The effect of Zinc sulphate.....	7
2.1.4 The effect of Ethepron.....	8
2.1.5 The effect of Antitranspirant material.....	9
2.2. The freezing injury.....	10
2.2.1 Development of method for determining frost killing temperature (FKT) of tomato leaves...	11
2.2.2 Determining supercooling point of tomato leaves.....	13
2.3 Hardening of tomato plants at different low temperatures.....	15
3) Material and Methods.....	21
3.1.1 Effect of different chemical treatments for cold resistance and slight frost condition on tomato seedlings.....	21

	<u>Page</u>
3.2.1 Development of method for determining frost killing temperature (FKT) of tomato leaves.	25
3.2.2 The description of thermogradient plate.....	27
3.2.3 Freezing and conductance technique.....	27
3.2.4 Visual score observation of damage.....	30
3.2.5 Effect of recovery time on electrolyte leakage after freezing at different temperature	31
3.2.6 Apparatus for determining supercooling points.....	31
3.2.7 Supercooling of dry and wet leaves of four tomato varieties.....	33
3.3.1 Effects of hardening of tomato plants at different low temperatures.....	34
3.3.2 Stomatal behaviour during hardening at low temperature.....	35
4) Results.....	
4.1. Initial number of leaflets for seedlings of different tomato varieties grown in pots and field.....	36
4.2. Effect of different chemical treatments on percentage of dead leaflets of some tomato varieties after first frost night exposure	36

	<u>Page</u>
4.3 Effect of different chemical treatments on percentage of dead leaflets of some tomato varieties after second frost night exposure	39
4.4 Effect of different chemical treatments on general vigour score and healthy tops score of some tomato varieties after first and second frost night exposure.....	41
4.5 The effect of different freezing temperatures on electrolyte leakage percentage of leaves of different tomato varieties.....	46
4.6 The effect of different freezing temperatures on electrolyte leakage percentage of leaves of different tomato species.....	46
4.7 Visual socre observation water soaked area	49
4.8 Effect of recovery time on electrolyte leakage after freezing at different temperatures.....	51
4.9 Supercooling points for dry/wet leaf discs...	51
4.10 Supercording points for leaves at different stages for growth.....	55
4.11 Effect of hardening of tomato plants var "Delisa" at different temperatures.....	57

	<u>Page</u>
4.12 Supercooling of hardened and non hardened of tomato leaves (Delisa var.).....	65
4.13 Stomatal behaviour during hardening at low temperature.....	65
5. Discussion.....	
5.1 Effect of different chemical treatments for cold resistance and slight frost condition of some tomato varieties.....	75
5.2 Freezing injury and determining frost killing temperature and supercooling point of tomato leaves.....	79
5.3 Effects of different temperature on harden- ing of tomato plants.....	83
5.4 Stomatal behaviour during hardening at low temperature.....	84
6) Summary.....	85
7) References.....	89
8) Arabic Summary	

° ° ° ° °

ACKNOWLEDGEMENT

*I wish to express deep sense of gratitude and thanks to **Professor Dr. M.A. Maksoud**, Professor of Vegetable Crops, Horticulture Department, Ain Shams University, for valuable guidance, continuous advice and constructive supervision.*

*I also wish to extend my deep gratitude and sincere thanks to **Dr. Adel S. El-Beltagy**, Associate Professor of Vegetable Crops, Horticulture Dept., Ain Shams Univ., for planning this work, his generous help, continuous advice and constructive supervision. I am grateful to **Professor Dr. A.R. Persson**, Department of Vegetable Crops, Agricultural University of Norway for facilities offered, continuous help and guidance throughout my stay in his department and constructive suggestions related to my carrier.*

*Thanks are also due to **H. Baugerod**, Department of Vegetable Crops, Agricultural University of Norway for planning, modifying and finally critically reading the manuscript.*

I am grateful to the research staff Norderos, Experimental Farm of the Agricultural Univ. of Norway, Aas at the Dept. of

Vegetable Crops. With special reference to Mr. Ostein Valse and Mr. Trevor Remodious for their day to day help and friendship which made it possible for me to carry out this work.

Thanks are also due to Professor D. Awataf. G. Behairy, Research Professor in the Botany Laboratory, National Research Center, for valuable help, advice and supervision.

Thanks are also due to the EGNO Project, for the study leave granted and research facilities at the Agricultural University at Aas, Norway.

I would also like to thank my colleagues at the Botany Laboratory, National Research Center.

INTRODUCTION

1- INTRODUCTION

A serious shortage in tomato production occurs in spring every year in Egypt. It seems that this drop in productivity is a resultant of low-night temperature prevailing during December, January and February which may induce poor fruit-set. Besides, frost waves occur almost annually causing, in some cases, severe damage to vegetative growth of tomato (Abou-Hadid *et al.*, 1985). Frost-sensitive plants, including herbaceous annuals, flowers of deciduous fruit trees, and fruits of many plant species, cannot tolerate ice formation within their tissues. Ice forming in or on frost-sensitive plants spreads rapidly both intercellularly and intercellularly mechanically disrupting the tissues. This disruption is usually manifested as flaccidity and/or discoloration, when the plant is warm again (Burke, *et al.*, 1976; Mayland and Cary, 1970). In general herbaceous plants cannot withstand temperature below -20°C , and a hardiness mechanism may be quite different from that in

woody perennials. An adapted plant species has internal mechanism that permit it to survive and reproduce in its ecological niche. It has been well documented that long days and warm temperatures encourage plants to grow without hardening (Irving, and Lanphear, 1967a). Short days and warm temperatures cause growth cessation and enhance hardiness in deciduous woody perennials (Oslund and Li, 1972) but not in certain evergreens (Gusta and Weiser, 1972), or winter cereals (Paulsen, 1968). Some species can be hardened by low temperatures with a sufficient amount of light, regardless of the photoperiod (Kohn and Levitt, 1965). Potato varieties of the species Solanum tuberosum will not acclimate to low temperatures (Chen and Li, 1976). Other solanum species can be hardened by short days and low temperatures. CCC enhanced frost hardiness by 1°C in S. commersoni, but had no effect on S. tuberosum (Shen and Li, 1983). Tomato is growing at all times, no rest period, and therefore probably little change in hardiness. Experiments on tomato hardening at

low temperature shows increase in hardiness from $-1.5^{\circ}\text{t } -3.0^{\circ}\text{C}$ (Extracellular freezing) for 30 min. (Shen and Li, 1983). Very little is known about frost hardiness in tomatoes. Therefore, more information is needed about, Frost Killing Temperature of different varieties and species.

The aim of the present work is to identify the best means for tomato seedlings hardening under cold and frost conditions in order to increase the ability of tomato plants to endure cold injury and slight frost. Also to investigate the effect of some chemical hardening treatments on some different tomato varieties.

The hardening effect of these treatments aimed to be tested under open field condition in the Norwegian late summer - early autumn season where climatic condition is comparative to the climatic condition of winter in Egypt (Peresson and Abou-Hadid, 1985). Meanwhile, a variety testing trail was intended to introduce suitable varieties which could be useful for open field cultivation in winter season in Egypt.