

1990/1
Ain Shams University
Faculty of Medicine
Department of Obstetrics and Gynecology

1990/1
Morphological Changes
In the Human Amnion Epithelium that Accompany Labor
As Seen with Transmission Electron Microscopy
1990/1
1990/1
1990/1

Thesis

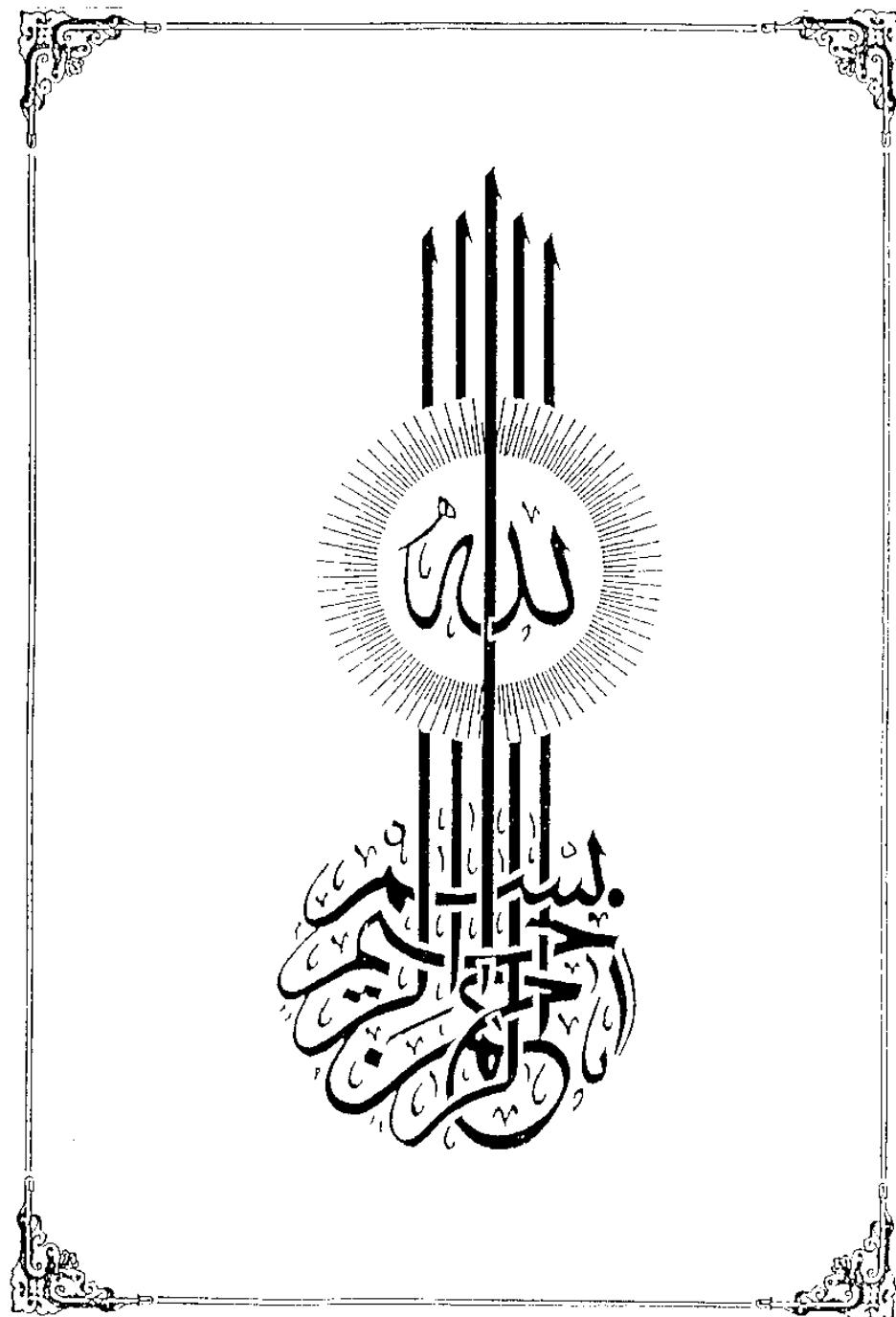
Submitted for partial fulfillment of the
Master Degree in Obstetrics and Gynecology

By

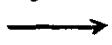
6/8/4
Samya Youssef El-Gohary
S. A.
M.B., B.Ch.

Under Supervision of

Prof. Dr. Ibrahim El-Mitwaly Samaha
52176
Prof. of Obstetrics and Gynecology
Ain Shams University


Prof. Dr. Sherif Mohamed Saleh El-Ghetany
Prof. of Obstetrics and Gynecology
Ain Shams University

Prof. Dr. Mohamed Reda Mahmoud Khorshed
Prof. of Anatomy - Electron Microscopy
Ain Shams University


1994

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	
LIST OF FIGURES	
INTRODUCTION	1
AIM OF WORK	2
REVEIW	
Development of amnion	3
The microscopic anatomy of the fetal membranes: a light miroscope, transmission electromicroscope study	7
Immunofluorescence of human amnion at gestational term	13
The extracellular matrix of human amniotic epithelium	15
Distribution and characterization of anionic sites in the basal lamina	16
Mobilization of arachidonic acid from specific glycerophospholipids of human fetal membranes during early labor	18
Prostaglandin F2 metabolite levels in plasma amniotic fluid, and urin during pregnancy and labor	21
MATERIAL AND METHODS	24
RESULTS	29
DISCUSSION	66
SUMMARY	73
REFERENCES	75
ARABIC SUMMARY	--

LIST OF ABBREVIATIONS

b	Basement membrane
b.L	Basal lamina
C	Cytoplasm
C.T.	Connective tissue
C.V	Cytoplasmic vacules
d	Dark cell
D	Desmosomal junctions
de	Dense bodies
F	Fat globules
f	Foot processes
F1	Dissolving fat globules
F2	Dissolved fat globules
G	Glycogen granules
hd	Hemi desmosomes
	Interdigititation
L.d	Lamina densa
L.r	Lamina rara
m	Mitochondria
N	Nucleus
Ni	Nucleoli
Nm	Nuclear membrane
P	Pale cell
P.N	Pknotic nuclei
P.V	Peri nuclear vacules
PR	Projections
R.B.C	Red blood corpuscle
R.E.R	Rough endoplasmic reticulum
S	Intercellular space
t	Tono filaments
	Terminalblebs
v	Microvilli
V.	Membrane bound vacules

LIST OF ABBREVIATIONS

Magnification power of electron micrographs

x 4.5 = 4500

x 7 = 7,000

x 10 = 10,000

x 15 = 15,000

x 20 = 20,000

x 30 = 30,000

x 45 = 45,000

LIST OF FIGURES

Fig. No.		Page
*	Light micrograph of amniotic epithelium from patient not in labor (Patient No. 1)	31

Fig. 1-10 = Electron micrograph of amniotic epithelium from patients not in labor.

1	Patient No. 1	32
2	Patient No. 3	33
3	Patient No. 3	34
4	Patient No. 1	35
5	Patient No. 3	36
6	Patient No. 3	37
7	Patient No. 2	38
8	Patient No. 1	39
9	Patient No. 2	40
10	Patient No. 2	41
**	Light micrograph of amniotic epithelium of full term patient in active labor (Patient No. 4).	44

Fig. 11-19 = Electron micrograph of amniotic epithelium from patients in active labor.

11	Patient No. 4	45
12	Patient No. 4	46
13	Patient No. 4	47
14	Patient No. 5	48
15	Patient No. 5	49
16	Patient No. 6	50
17	Patient No. 6	51
18	Patient No. 6	52

19	Patient No. 5	53
***	Light micrograph of preterm amniotic epithelium (Patient No. 7)	56

Fig. 20-28 = Electron micrograph of preterm amniotic epithelium

20	Patient No. 7	57
21	Patient No. 8	58
22	Patient No. 8	59
23	Patient No. 9	60
24	Patient No. 7	61
25	Patient No. 7	62
26	Patient No. 9	63
27	Patient No. 9	64
28	Patient No. 8	65

INTRODUCTION

INTRODUCTION

The human fetal membrane (amnion and chorion laeve) are believed to play a vital role in the maintenance of the intrauterine integrity during gestation.

The amnion is also known to liberate arachidonic acid and synthesize prostaglandin E2 which is involved in initiation of labor.

The microanatomy of human fetal membrane has been studied previously by a number of investigators (Danforth, 1958; Bourne, 1960; Armstrong, 1968; Van Herendaal, 1978 and King 1985).

It has been noticed that the amnion epithelial cells are heterogeneous with respect to light microscopic appearance; there are both "light and dark" stained cells with hematoxylin and eosin (Aplin et al., 1985).

Transmission electron microscopy was used to assess the influence of normal active labour on the ultra-structure of the human amnion epithelial membrane.

AIM OF WORK

AIM OF THE WORK

To determine whether the process of normal active labor influences the ultra structural features of the human amnion epithelium.

REVIEW OF LITERATURE

DEVELOPMENT OF AMNION

At eighth day of development the blastocyst is partially embedded in the endometrial stroma. The cells of the inner cell mass or embryoblast differentiate into two layers: a layer of small cuboidal cells known as the hypoplast layer and a layer of high columnar cells the epiblast layer together they are known as the bilaminar germ disc.

The germ layers extend beyond the region in which the embryo itself develops these peripheral portions of the germ layers give rise to the fetal membranes.

Fetal membranes:

These are structures that have developed from the zygote but do not form part of the embryo, they are called extra embryonic membranes. They may be regarded as auxiliary organs that assist in the protection of the embryo and provide for its respiration nourishment, and excretion.

They include the yolk sac, allantois, amnion, and chorion.

Amnion arises as a layer of somatopleure. This membrane forms the wall of the amniotic cavity which appears within the epiblast and is attached to the periphery of the embryonic disc which serves as a floor to the amniotic cavity.

The amnion is thin, tough, transparent non vascular membrane formed of ectoderm on the inside and extra embryonic mesoderm on the out side.

As the embryo develops: At the head region of the embryo a fold of combined ectoderm and mesoderm begins to move back over the surface of the embryo, this comprises the head fold of the amnion.

Somewhat later a similar fold appears posterior to the embryo, the tail fold of the amnion.

These folds approximate each other and finally fuse together, while the head fold and the tail fold are developing, lateral folds of the amnion appear. These extend both above and below the embryo, with the result that the embryo is completely enveloped in a sac: the amnion.

At the end of third month, the amnion has expanded to such an extent that it comes in contact with the chorion, thereby obliterating the chorionic cavity (Barth, 1966; Snell, R. 1975 and Sadler T.W. 1985).

Aminotic fluid:

It has been shown (Vosburg et al., 1948; Plentl et al., 1955; Hutchinson et al., 1955; Paul et al., 1956 and Neslen et al., 1954), that the amniotic fluid is by no means static but rather is in dynamic equilibrium and a constant state of change with maternal system.

In the human being, the turn over of water is from 350 to 600 cc per hour (Plentl et al., 1955).

Although the exchange of water is said to occur by simple diffusion, (Paul et al., 1956) a characteristic differential in the transfer rate of certain tagged substances (Neslen et al., 1954) the demonstration by Wirtschafter et al., (1957), of significant differences in protein fractions between amniotic fluid and maternal serum in the rate suggested that the exchange process is neither by transudation nor by the ultrafiltration of plasma. They stated that the fetal membranes and perhaps more specifically the amnion are directly concerned in these selective