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SUMMARY

In 1961, Ju. I. Cherski {1] started to develop a method
for solving steady mixed boundary-value problems of the "Dirichlet-
Neumann™ type, Gradually, this method has become of wide applicaticn
forsolution of problems in several branches of mathematical physics
[2] ,[3]. In brief, this method reduces the mixed boundary - value

problems to systems of algebraic equations,

In 1981 , M. G. El-Sheikh [4]modified the above method to
solve initial value problems with mixed boundary conditions.The proced-
ures of this modification suggest the validity of the statement that
the methods in which a problem is reduced to a system of algebraic
equations have the advantage that they can be extended tc include
initial value problems with mixed boundary condlitions identical to

those 1n the stationary problem.

This work presents a special method for sclving steady
problems with " Dirichlet - Newton " boundary conditions. The propo-

sed method consists of reducing the problem to a discrete problem by

means of the “inite Fourier transform in a way like that followed in
[1}-—-[4] . This in turn is transformed to the aircraft wings sing-
ular integro-~differential eaquation ., Using the orthogonzl Chebyshev
polynemials {5], the latter eguaticn can be reduced to an infinite

system of algebraic equations.

The thesis consists of four chapters. The First chapter

is an intr :ductory cne ., It exhibits all the mathematilcal background
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and tocls on which the method is based-

In the second chapter, the method is illustrated by means
of a typical preoblem: the staticnary heat equation within the unit
circle. It has been shown that the algebric system,to which the prob-
lem is reduced, is always quasi-regular. In other words , this system
can, in principle,be sclved for all values of the parameters in the
problem . Moreover, the domain of regularity of the system is defined.
Finally, more examples of simple problems which can be solved by the

method are outlined.

It has been shown in chapter three that the methoed can be
extended to reduce problems with several mixed conditions to several
algebraic systems, In order to complete the solution of such problems,

a class of integrals are specially calculated,

In the last chapter, the procedures are carried cut right
to the numerical step. The numerical results suggest stronglyv that the
method of truncation is convenient for solving algebraic systems to

which simple problems are reduced.

The more the problem beccmes of more complicated geometry,the

higher <the order of the truncation should be considered, and one will

have to refer to 2 nigh speed computer.
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CHAPTER 1

INTRODUCTION

1.1, THE CAUCHY TYPE INTEGRALS WITH HOLDER-CONTINUOUS DENSITY.

The integral

o (z) = 5 {0l 4o (1.1.1)

2mi L T - 2

s where L is a smooth contour in the z-plane and 4 (1) is a continu-
cus function on L , 1s called the Cauchy type integral. By a smooth
contour we understand a simple , closed or open line with continuously

varying tangent and having no-recurrent points.

The Cauchy type integral (1.1.1) defines a function
which is analytic in the entire plane except for the points of L ,

Further, i1t vanlshes at infinity; i.e.

P (=) =0. (1.1.2)
This result can easily be verified by expanding the kerrel of the

Cauchy type integral in the vicinity of infinity into the series

in which the zero power is absent. Also , it is well-known that i1if
tke density ¢ (z) 1s analytic inside L and continuous on L, then
¢ {z) y, zebh
2 (z} = {1.1.3)

0 , zZeD

+ . . . . - . . i .
D is the Domalin within L and D 1is that outside L . However, 1if

$ (z} is analytic outside L and comtinuous on L , then
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d (z) = (1.1.4)

As the peint z approaches the contour L, the Cauchy type
integral .an =still be defined for the densities satisfying the Hblder-
condition on L. . By definition ¢ (t) obeys the Hélder-condition if
the relation

| oltad= 0 (t1) | < &1 tz = t1 |}, oo (1.1.5)

is satisfied for any two peoints t; and t; on L . In this case the

Cauchy principal value of the curvilinear integral

o (t) = 5 2 4 (1.1.6)
L 1-¢

, where T and t are complex cocordinates of points on the smooth
contour L, can be defined, To this end, we describe a circle of radius
p and centre © on L and b

denote t1 and t,; the pcoints of

the circie intersecting L. The Cauchy ta

principal value of the singular integral

(1,1.6) is defined as the 1imit of the t,
integral a
¢(7) ${t) - ¢(t) dt
S dt = J e—dT () S
-2 1t -t L-2 T = t L-2 1-¢
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as p tends to zero , § is the part t;t, of L. In view of the HOlder
condition (1.1.5), the first integral exsists as improper and the
second is equal to &n{(b-t) /{a=t)} + iy. Thus , integral (1.1.6)

can be represented in the form

) o(1)= o(t) ot

dt +¢(t) n — 1.1.7)
T = t t-a

3 (g)= 5 201
L

dr = [J
L

1
o+

in which the branch of the logarithmic function is selected in such
a way that n{=1)= 7i . In particular, if L is closed, eguation

(1.1.7) becomes

I (b(T) a1t = J ¢(T) - ¢(t) dt + im ¢ {(t) - :(1.‘].8)
LT-t L T=- t

1.2, THE SOKHOTSKI FORMULAE,

If the density ¢(T) obeys the H8lder condition,twe rela-
tions can be derived connecting the singular integral (1.1.6) and

+
the limiting values ¢~ (t) of the Cauchy type integral (1.1.1):

Lim, <hop 2O 4 (1.2.1)
Tzttt 2Zui L

The symbcl t+(t-) means that z approaches t on a path lying to the
left {right} of L. This connection follows from the continuity of the
function

olr) - ofz)

T = 2

volz) = f dt {1.2.2)
L

at all points of the contour L except its end points [6] . In the

notation of (71.2.1) this yields :
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