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SUM"\1\RY 

In 1961, Ju, I. Cherski [1] started to develop a method 

for solving steady mixed boundary-value problems of the "Dirichlet­

Neumann" type. Gradually, this method has become of wide application 

forsolution of problems in several branches of mathematical physics 

[2] ,[3], In brief, this method reduces the mixed boundary- value 

problems to systems of algebraic equations. 

In 1981 , M. G. El-Sheikh [4]modified the above method to 

solve initial value problems Hith mixed boundary conditions.The proced­

ures of this modification suggest the validity of the statement that 

the methods in Hhich a problem is reduced to a system of algebraic 

equations have the advantage that they can be extended to include 

initial value problems with mixed boundary conditions identical to 

those in the stationary problem. 

This 1wrk presents a special method for solving steady 

problems with " Dirichlet - Newton " boundary conditions. The propo­

sed method consists of reducing the problem to a discrete problem by 

means of the ''ini te Fourier transform in a way like that followed in 

[ 1 J- [4] . This in turn is transformed to the aircraft wings sing­

ular integra-differential eauation • Using the orthogonal Chebyshev 

polynomials [5], the latter equation can be reduced Lo an infinite 

system of algebraic equations. 

The thesis consists of four chapters. The ~irst chapter 

is an intr =ductory one . It exhibits all the ~athematical background 
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and tools on which the method is based· 

In the second chapter, the method is illustrated by means 

of a typical problem: the stationary heat equation within the unit 

circle. It has been shown that the algebric system,to which the prob­

lem is reduced, is always quasi-regular. In other words , this system 

can, in principle,be solved for all values of the parameters in the 

problem • Moreover, the domain of regularity of the system is defined. 

Finally, more examples of simple problems which can be solved by the 

method are outlined. 

It has been shown in chapter three that the method can be 

extended to reduce problems with several mixed conditions to several 

algebraic systems. In order to complete the solution of such problems, 

a class of integrals are specially calculated. 

In the last chapter, the procedures are carried out right 

to the numerical step. The numerical results suggest strongly that the 

method of truncation is convenient for solving algebraic systems to 

which simple problems are reduced. 

The more the problem beco~es of more complicated geametry,the 

higher the order of the truncation should be consideced, and one will 

have to refer to a high speed computer. 
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CHAPTER 1 

INTRODUCTION 

1.1, THE CAUCHY TYPE INTEGRALS WITH HOLDER-CONTINUOUS DENSITY, 

The integral 

¢ ( z) = f 
L 

(1.1.1) 
21Ti T - Z 

, where L is a smooth contour in the z-plane and ¢ (T) is a continu-

ous function on L , is called the Cauchy type integral. By a smooth 

contour we understand a simple , closed or open line with continuously 

varying tangent and having no-recurrent points. 

The Cauchy type integral (1.1.1) defines a function 

which is analytic in the entire plane except for the points of L • 

Further, it vanishes at infinity; i.e. 

¢ ( ro) = 0 • (1.1.2) 

This result can easily be verified by expanding the kerr,el of the 

Cauchy type integral in the vicinity of infinity into the series 

T 
= ---

T-Z z 

n-1 
T 

n 
z 

- ... , 

in which the zero power is absent. Also , it is well-known that if 

tte density ¢ ( z) is analytic inside L and continC>ous on L, then 

¢ ( z) z € D+ 

¢ ( z) ={ (1.1.3) 

0 z € D t 

D+ is the Domain within L and D is that outside L . However, if 

¢ (z) is analytic outside L and continuous on L , then 
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cjl ( oo) + 

={ 
, z s D 

<!J (z) (1.1.4) 

-cjl (z)+ cjl(m) D 1 Z E 

As the point z approachRs the contour L, the Cauct1y type 

integral .. an still be defined for the densities satisfying the Holder-

condition on L . By definition cjl (t) obeys the Holder-condition if 

the relation 

(1.1.5) 

is satisfied for any two points t 1 and t 2 on L • In this case the 

Cauchy principal value of the curvilinear integral 

<!J (t) = f ~ dT 
L T - t 

(1.1.6) 

, where T and t are complex coordinates of points on the smooth 

contour L, can be defined. To this end, we describe a circle of radius 

p and centre t on L and 

denote t1 and t 2 the points of 

the circle intersecting L. The Cauchy 

principal value of the singular integral 

(1.1.6) is defined as the limit of the 

integral 

cjl(T) 
f dT 
L-9, T - t 

= f 
L-9, 

cjl(T) - cjl(t) 

T t 

a 

dT 
dT + cjl(t) f 

L-9, T - t 
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as p tends to zero , £ is the part t 1 t 2 of L. In view of the Holder 

condition (1.1.5), the first integral exsists as improper and the 

second is equal to £n{(b-t) /(a-t)}+ in· Thus , integral (1.1.6) 

can be represented in the form 

~ (t)= f ~ dT 
L T - t 

= J 
L 

¢(T)- ¢(t) dT +¢(t) £n b-t (1.1.7) 
T t t-a 

in which the branch of the logarithmic function is selected in such 

a way that £n(-1)= ni 

( 1 • 1 • 7) becomes 

f ...1!21. dT = 
L T - t 

In particular, if L is closed, equation 

f ¢(T) - ¢(t) dT + in¢(t)· (1.1.8) 
L T - t 

1.2. THE SOKHOTSKI FORMULAE, 

If the density ¢(T) obeys the Holder condition,two rela-

tions can be derived connecting the singular integral (1.1.6) and 

the limiting values 

+ 
~- ( t) = Lim+ 

z+t-

+ 
g,- (t) of the Cauchy type integral ( 1.1. 1): 

J ...1!21. (1.2.1) 
2ni L T- z 

+ -The symbol t (t ) means that z approaches t on a path lying to the 

left (right) of L. This connection follows from the continuity of the 

function 

'!' ( z) = J 
L 

¢(T) - ¢(z) 

T Z 

dT ( 1. 2. 2) 

at all points of the contour L except its end points [6] • In the 

notation of ( 1. 2. 1) this yields : 


