PETROLOGICAL AND GEOCHEMICAL

STUDIES ON

THE

METAGABBRO - DIORITE COMPLEX

IN

WADI AMBAUT

EASTERN DESERT EGYPT

A Thesis Submitted

Ву

NAGY SHAWKY BOTROS

B. Sc.]

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

CAIRO, EGYPT

l n

Partial Fulfilment Of The

Requirements For The Degree

Of Master Of Science

GEOLOGY

1986

ABSTRACT

Field investigation and petrological studies of the metagabbrodicrite complex occurring in Wadi Ambaut in the Central Eastern Desent of Egypt revealed that the metagabbroic mass includes actinolitehornolende metagabbro, actinolite leucometagabbro, chlorite-saussurite metagabbro, biotite metagabbro, quartz injected metagabbro as well as relics of preexisting fresh gabbros.

Metasomatism was operative near contacts with the granodiorite and resulted in the introduction of biotite, chlorite, quartz as well as the saussuritisation of plagioclase and local hybridisation.

Diorites are differentiated into microdiorites, coarse-grained diorites, quartz diorites and tonalites. Microdiorites are considered as late members of the gabbroic intrusion, whereas coarse-grained quartz diorites and tonalites are considered as the marginal facies of Rabdi granodiorites.

The petrochemical andgeochemical study, based on the complete silicate analysis of 15 representative samples indicates the presence of two magnatic suites namely tholeiitic and calc-alkaline suite. Almost all the metagabbro samples plot in the field of tholeiites and some diagrams confirm that these metagabbros mimic the evolution trend of midoceanic ridge basalts (MORB). The diorites, on the other hand, show affinity towards the calc-alkaline series. Some diagrams show that they occupy the field of arc tholeiites. However plotting is far from the trend line of abyssal tholeiites which precludes in turn the possibility that the diorites belong to the same magma series of metagabbros.

ACKNOWLEDGEMENT

I whould like to express my deep gratitude and sincere thanks to Prof. M. Ezzeldin Hilmy, Professor of Mineralogy and Petrology, Ain Shams University, for unlimited help, continuous encouragement and constructive criticism during this study.

I would like to express my great and deep indebtedness to Prof. Dr. A.H. Sabet, Exvice chairman of the Geological Survey of Egypt, for his supervision, valuable assistance particularly during the field investigation, guidance and reading of the manuscript.

Thanks to Dr. Maher M. Shaaban Lecturer of Geochemistry, Geology Departement, Faculty of Science, Ain Shams University for his encouragement and guidance. His supervision of the petrogenetic work and valuable comments are gratefully acknowledged.

I am greatly indebted to Dr. B.EL. Kaluobi, Lecturer of Metamorphic Fetrology, Geology Departement, Faculty of Science, Ain Shams University for his cooperation and valuable guidance throughout this work.

Thanks are due to the Chairman of the Board of the Geological Survey of Egypt for giving the writer the chance to carry out the present work.

NOTE

The present thesis is submitted to the Faculty of Science, Ain Shams
University in partial fulfilment of the requirements for the degree of
Master of Science in Geology.

Beside the research materialized in this thesis, the candidate has attended and successfuly passed examination in the following courses:

- 1- Field Geology.
- 2- Sampling.
- 3- Photogeology.
- 4- Crystallography.
- 5- Mineralogy.
- 6- Sedimentary Petrology.
- 7- Igneous Petrology.
- 8- Metamorphic Petrology.
- 9- Geochemistry.
- 10- Language.

Head Departement of Geology

CONTENTS

	Page
ABSTRACT	
ACKNOWLEDGEMENT	
LIST OF FIGURES	VI
LIST OF TABLES	XIV
CHAPTER I	
INTHODUCTION	
1.1. INTRODUCTION	1
1.2. AREA INVESTIGATED	4
1.3. ACCESSIBILITY	5
1.4. TOPOGRAPHIC AND PHYSICAL FEATURES	5
1.5. PREVIOUS STUDIES	6
1.6. SCOPE AND OBJECTIVES OF THE PRESENT STUDY	7
1.7. METHODS OF STUDY	8
CHAPTER II	
REMARKS ON THE METAGABBRO-DIORITE	
COMPLEX OF EGYPT	
II.1. TERMINOLOGY AND ORIGIN	9
II.2. LITHOSTRATIGRAPHY	14
II.3. ISOTOPIC AGE STUDIES	18
II.4. TECTONIC SETTING	20

CHAPTER III

GEOLOGICAL SETTING

III.1. METAVOLCANICS	Page 23
111.2. ULTRAMAFICS AND ASSOCIATED RCCKS	24
III.3. METAGABBROS	26
III.3.1- Fresh (unaltered) gabbros	28
A. Hornblende gabbros	28
B. Normal gabbros	29
III.3.2- Metagabbros	. 29
A. Actinolite-hornblende metagabbros	29
B. Actinolite-leucometagabbros	31
C. Chlorite-saussurite metagabbros	31
D. Biotite metagabbros	31
E. Quartz injected metagabbros	32
III.4. DIORITES	33
<pre>III.4.1- Fine-grained diorites (microdiorites)</pre>	33
III.4.2- Coarse-grained diorites	34
111.5. GRANODIORITES AND ADAMELLITES	35
III.6. DYKES AND VEINS	36
CHAPTER IV	
PETROGRAPHY OF THE COUNTRY ROCKS	
IV.1. METAVOLCANICS	38
IV.2. ULTRAMAFICS AND ASSOCIATED ROCKS	39
IV.2.1- Plagioclase bearing hornblende pyroxenites	40
IV.2.2- Plagioclase bearing pyroxene hornblendites	42

- III -	Page
IV.2.3- Serpentinites and associated rocks	43
IV.2.4- Modal analysis of the ultramafic rocks	44
IV.3. GRANODIORITES AND ADAMELLITES	44
IV.3.1- Granodiorites	44
Iv.3.2- Adamellites	45
IV.3.3- Modal analysis of granodiorites and adamellites	46
IV.4. DYKES AND VEINS	46
IV.4.1- Dolerite dykes	46
IV.4.2- Andesite dykes	47
IV.4.3- Dacite-rhyodacite dykes	48
IV.4.4- Rhyolite dykes	49
IV.4.5- Quartz veins	50
CHAPTER V PETROGRAPHY OF THE METAGABBRO-DIORITE COMPLEX	
V.1. METAGABBROS	51
V.1.1- Fresh (unaltered) gabbros	52
A. Normal gabbros	52
B. Hornblende-pyroxene gabbros	52
C. Hornblende gabbros	52
V.1.2- Altered gabbros (metagabbros)	53
A. Actinolite-hornblende metagabbros	53
B. Actinolite-leuco metagabbros	53
C. Chlorite-saussurite metagabbros	54
D. Biotite metagabbros	54
E. Quartz injected metagabbros	54

- JV -	Page
V.1.3- Modal analysis of original and metagabbros	54
V.2. DIORITES	63
V.2.1- Fine-grained diorits (microdiorites)	64
V.2.2- Coarse-grained diorites	66
A. Normal diorites	66
B. Quartz diorites	67
C. Tonalites	70
V.2.3- Modal analysis of diorites	71
CHAPTER VI	
PETROCHEMICAL AND GEOCHEMICAL	
CHARACTERISTICS OF THE COMPLEX	
VI.1. PETROCHEMICAL CHARACTERISTICS	74
VI.1.1- Mesonorm	74
VI.1.2- Variation diagrams	79
VI.1.3- Alkali versus SiO ₂ diagram	81
VI.1.4- AFM diagram	81
VI.1.5- Geochemical trends of major oxides	82
VI.1.6- Mafic and felsic indices	84
VI.1.7- SiO ₂ -FeO*/ MgO discriminant diagram	85
VI.1.8- Fe 0* & Ti O ₂ versus Fe 0* / Mg O discriminant diagrams	85
VI.2. GEOCHEMICAL CHARACTERISTICS	86
VI.2.1- Ti-Cr discriminant diagram	87
VI.2.2- V-Cr discriminant diagram	88
VI.2.3- K-Rb relationship	89

~ V -	
~ V -	Page
VI.2.4- V-FeO* / MgO discriminant diagram	89
VI.2.5- Ni / Co- FeO* / MgO discriminant diagram	90
VI.3. PETROGENESIS IN THE LIGHT OF G. ABALLOAL DISCUSSION	90
CHAPTER VII SUMMARY AND CONCLUSIONS	
SOUTHANT HIND CONCEUSIONS	93
REFERENCES	102
ARABIC SUMMARY	

- VI -

LIST OF FIGURES

Fig. No.		fter	page
1:	Key map showing the location of Wadi Ambaut area studied in		
	the present work.		4
2:	A part of Wadi EL-Gemal topographic sheet showing the loca-		
	tion of area investigated.		6
3:	Geological map of Wadi Ambaut area		22
4:	Rose diagram showing the major trends of fractures in meta-		23
	volcanics.		
5:	Sharp intrusive irregular contact between metavolcanics (V)		
	and metagabbros (G)		23
б:	Xenoliths of plagioclase-bearing pyroxene hornblendite(H)		
	included in the actinolite-hornblende metagabbro (G)		24
7:	Spheroidal to semispheroidal weathering of proper metagabbro	s	26
8:	Coarse-grained, massive hornblende-gabbro of Wadi Ambaut.		2ა
9:	Vertical dyke of fine-grained actinolite-hornblende metaga-		
	bbro (G) cutting the metabasalts (V)		30
10:	Rose diagram showing the major trends of fractures in acti-		
	nolite-hornblende metagabbro		30
11:	Bifurcating pink adamellite veins injecting the biotite me-		
	tagabbro		32
12:	: Biotite metagabbro (G) acquiring pegmatoid crystals of pla-		
	gioclase (P) at the contacts with the adamellite veins		32
13:	: Rose diagram showing the major trends of fractures in micro)	
	diorites		33

Fig. No.	•	if'ter page
i4:	Tonalite with schistose appearance due to the intensive sh-	
	earing associated with the intrusion of Rabdi granodiorite	35
15:	Sharp contact between quartz diorite-tonalite (D) and Rabdi	
	granodiorite (GR)	35
16:	Xenoliths of quartz diorite (D) included in the Rabdi gran-	
	odiorite massif (GR)	35
17:	Low-lying metagabbro-diorite complex (G) with respect to	
	Rabdi granodiorite(GR).	36
18:	Outcrop of Rabdi granodiorite showing pronounced exfoliation	n 36
19:	Xenoliths of fine-grained actinolite-hornblende metagabbro	
	(G) included in Rabdi granodiorite (GR)	36
20:	Rose diagram showing the major trends of the pink adamellit	e
	veins	36
21:	Xenoliths of fine-grained actinolite-hornblende metagabbro	
	(G) and porphyritic metagabbro (PG) enclosed in pink adamel	- 36
	ite veins (AD)	
22:	Major dolerite dyke with uniform thickness cutting the meta	
	gabbros	37
23:	A rhyodacite dyke cutting the metagabbros and showing dist-	
	inctive swelling and pinching	37
24:	Rose diagram showing the major trends of the dykes in the	
	studied area	37
25:	Rose diagram showing the major trends of the quartz veins	

Fig.		lfter page
	in the studied area	37
26:	Photomicrograph of metabasalt displaying microporphyritic	
	texture. Phenocrysts of plagioclase and secondary hornblende	ę
	are disposed in cryptocrystalline to microcrystalline ground	- i
	mass. C.N. X 120	38
27:	Photomicrograph of porphyritic metarhyodacite showing pheno-	-
	crysts of simple twin hornblence embedded in microcrystalling	е
	matrix of alkali feldspar, quartz and biotite. C.N. X 120	39
28:	Photomicrograph of plagioclase-bearing hornblende pyroxenit	е
:	showing a mosaic texture of equigranular diopsidic augite an	d
	interstitial iron oxides. P.P. X 300	40
29:	Photomicrograph of plagioclase-bearing hornblende pyroxenit	е
	displaying exsolution lamellae of pigeonite parallel to (00	1)
	planes of augite host. C.N. X 300	40
30:	Photomicrograph of plagioclase-bearing hornblende pyroxenit	,e
	showing multiple twinning parallel to the (100) planes in	
	augite. C.N. X 300	40
31:	Composition diagram showing the field of clinopyroxenes of	
	the mafic and ultramafic rocks of Wadi Ambaut	40
32:	Photomicrograph of plagioclase-bearing pyroxene hornblend-	
	ite showing well-developed crystals of brown hornblende.	
	C.N. X 120	4:2
33:	Photomicrograph of serpentinite showing fibrolamellar anti-	-
	gorite pseudomorphous after pyroxene traversed by veinlets	

Fig. No.		After page
	of chrysotile. C.N. X 300	43
34:	Photomicrograph of serpentinite showing cross fibred veinl-	
	ets of chrysotile traversing the antigorite. C.N. X 300	43
35:	Modal plagioclase ($P\underline{1}$), pyroxene (Px) and hornblende (Hb)	
	proportions of the studied mafic and ultramafic rocks plot-	
	ted in PlPx Hb ternary diagram of Streckeisen (1976)	44
36:	Photomicrograph of Rabdi granodiorite showing plagioclase,	-
	potash feldspar, quartz and biotite. C.N. X 120	45
37:	Photomicrograph of adamellite composed of potash feldspar,	
	sodic plagioclase and quartz onenocrysts with minor biotite	е
	embedded in a fine groundmass of the same constituents.	
	C.N. X 120	45
38:	Modal quartz (Q), alkali feldspar (A) and plagioclase (P)	
	proportions of the studied granodiorites and adamellites pl	L-
	otted on AQP ternary diagram of IUGS of Lyons (1976)	46
39:	Photomicrograph of dolerite dyke showing porphyritic cryst-	-
	al of plagioclase embedded in a fine matrix displaying a de	D -
	leritic texture. C.N. X 120	47
40:	Photomicrograph of dolerite showing well developed dolerit	-
	ic texture. C.N. X 120	47
41:	Photomicrograph of andesite composed of plagioclase, hornb	-
	lende, biotite with minor interstitial quartz. The rock ex	-
	hibits equigranular texture. C.N. X 120	48
42:	Photomicrograph of rhyodacite showing a phenocryst of	

Fig. No.		After page
	plagioclase embedded in a fine-grained groundmass composed	ì
	of quartz, feldspar and biotite. C.N. X 120	48
43:	Photomicrograph of porphyritic rhyodacite showing intergro-	-
	wth between plagioclase and hornblande. C.N. X 120	49
44:	Photomicrograph of quartz vein showing subhedral to anhedr-	-
	al crystals of deformed quartz with pronounced undulose ex-	-
	tinction. C.N. X 120	50
45:	Photomicrograph of normal gabbro composed of plagioclase as	nd
	augite displaying subophitic texture. C.N. X 120	52
46:	Photomicrograph of hornblende gabbro showing a well develo	-
	ped crystal of primary hornblende. C.N. X 120	53
47:	Photomicrograph of actinolite-hornblende metagabbro showing	g
	secondary actinolite after augite and saussuritised plagio	-
	clase C.N. X 120	53
48:	Photomicrograph of actinolite-leucometagabbro showing the	
	predominance of altered plagioclase crystals with a notice	
	able amount of actinolite after augite C.N. X 120	53
49:	Photomicrograph of chlorite-saussurite metagabbro showing	
	hornblende rimmed with chlorite, partially altered plagioc	-
	lase and interstitial iron oxides P.P. X 300	54
50:	Photomicrograph of biotite metagabbro displaying overgrowt	
	of biotite at the expense of hornblende crystals C.N. X 30	00 54
51:	Photomicrograph of quartz injected metagabbro showing subh	