STUDIES ON THE SIDE EFFECT OF SOME COMPOUNDS OF A PLANT ORIGIN ON THE CYTOGENETIC LEVEL.

THESIS SUBMITTED TO

The Department of Zoology (University College for Women Ain Shams University

BY

FAWZIA ABD EL-HADY EL-SAID
Assistant Lecturer
Zoology Department
Faculty of Science
Zagazig University

FOR

The Award of the Degree of Ph.D.in Zoology (Cytogenetics)

1988 Cairo - Egypt

studies on the side effect of some compounds of a plant origin on the cytogenetic level

Thesis Advisor

Prof. Zakia Riad

Professor of Cytogenetics

Zoology Department

University College for women

Ain Shams University

Approved

Head of Zoology Department

M. Ashay

ACKNOWLEDOMENT

I am greatly indebted to Dr. Zakia Riad, Professor of Cytogenetics Zoology Department, University College for Women, Ain Shams University, for suggesting the point of research, tutorial guidance, unfailing interest, and her fruitful help. She also helped me a lot in preparing this work and made lots of efforts in preparing all photographic plates presented in this work.

I wish also to express my deep thanks to my husband Dr. Abd. El Aziz Diab, Lecturer of Physiology. Faculty of Science, Zagazig University for the effort he made and encouraging me in presenting this work.

I would not forget to thank, all the staff members, demonstrators and workers of the Cytogenetic loboratory, Zoology Department University College for Women, Ain Shams University for offering sincere efforts and best wishes.

CONTENTS

INTRODUCTION	PAGE
	_
AIM OF THE PRESENT WORK	10
MATERIAL AND METHODS	11
OBSERVATIONS	14
A. CHOICE OF THE WORKING DOSE	14
B. EFFECT OF eta -SITOSTEROL ON THE SPERM MORPHOLOGY.	
I- Literature.Review	14
II- Present Findings	15
C. DOMINANT LETHAL GENE TEST	29
I- Literature. Review	29
II- Present. Findings	30
D. CHROMOSOME ABNORMALITIES IN NEWLY BORN RATS TO	
TREATED PARENTS.	
I- Literature. Review	38
II- Present. Findings	40
DISCUSSION	123
SUMMARY	139
REFERENCES	. 142
ARABIC SUMMARY	. 152

LIST OF TABLES

Table.(1): Abnormally shaped sperms in response to	19
a low dose of eta -sitosterol.	
Table.(2): Abnormally shaped sperms following a high	20
dose treatment with eta -sitosterol.	
Table.(3): Effect of eta -sitosterol on the of sperm	21
shape.	
Table.(4): Results obtained from matings of control	31
male and female rats.	
Table.(5): Progeny of males receiving a low dose of	32
eta-sitosterol.	
Table.(6): Progeny of males receiving a high dose of	33
eta-sitosterol and undosed females.	
Sable.(7): Progeny of female parents treated with a	34
low dose of $oldsymbol{eta}$ -sitosterol and control males.	
'able.(8):Progeny of females receiving a high dose of	35
$oldsymbol{eta}$ -sitosterol and undosed males.	
'able.(9): Progeny of parents receiving a low dose of	35
eta-sitosterol.	
able.(10):Progeny of parents receiving a high dose of	36
eta-sitosterol.	
able.(11): Foetal death due to treatment with	37
eta-sitosterol.	
able.(12): Frequencies of chromosomal damage in newly	58
born rats to treated male parents.	

Table.(13):Percentage	frequencies	in	missing	Page 87
chromosomes in	analysed met	taphases	of newly	
borns to treate	d male parent	ts .		

- Table.(14):Percentage frequencies of additional 90 chromosomes in analysed metaphases of newly borns to treated male parents.
- Table.(15):Percentage frequencies of missing 100 chromosomes in analysed metaphases of newly born rats to treated female parents.
- Table.(16):Percentage frequencies of additional 104 chromosomes in analysed metaphases of newly borns to treated female parents.
- Table.(17): Unusual findings in metaphases of baby 104 rats born to treated female parents.
- Table.(18):Percentage frequency in chromosomal missing 115
 in analysed metaphases of newly borns to
 treated both parents
- Fable.(19):Percentage frequency of additional chromosomes 115
 in analysed metaphases of newly borns to
 treated both parents
- 'able.(20):Frequencies of chromosomal damage in newly 116
 born rats to treated both parents

LIST OF FIGURES

		Page
Fig.(1).	A normal sperm head from a control male rat	17
	(x1000)	
Fig.(2).	A whole sperm cell showing the gradual	18
	decrease in diameter of the tail (x500).	
Fig.(3).	Sperm cells showing an unusual acute curveture of the hook (x1000).	22
Fig.(4).	Sperms with unusually straight heads.	23
Fig.(5).	Sperm cells with head deformities .	24
Fig.(6).	Sperms showing two heads with one tail.	25
Fig.(7).	Deformities in tail of sperm cells.	26
Fíg.(8).	Sperms showing deformities in the head and tail regions .	28
Fig.(9).	A normal metaphase from a control newly born female rat.	41
Fig.(10).	The karyotype of the metaphase shown in fig 9.	42
Fig.(11).	A karyotype for a metaphase from a newly born male rat.	43
Fig.(12).	Autosomes of group 1-3 from 10 control animals arranged in descending order.	45
Fig.(13).	Autosomes of group 4-10 corresponding to those shown in fig 12.	46
Fig.(14).	Autosomes of group 11-13 corresponding to those in fig 12.	47
Fig.(15).	Autosomes of group 14-20 corresponding to those in fig 12.	48
Fig(16).	The sex chromosomes.Left:XY; Right:XX.	49
Fig(17).	Several metaphases from control animals showing dicentric chromosomes.	51

		p age
Fig.(18).	A metaphase showing an exchange figure.	52
Fig.(19).	Metaphases showing a variety of reduced numbers of chromosomes from control animals.	53
Fig.(20).	Metaphases showing increased numbers of chromosomes from control animals.	54
Fig.(21).	Dicentric autosomes from control animals .	56
Fig.(22a&H	Note that the extra chromosomes belonged to groups 4-10 and 14-20.	57
Fig.(23).	Several metaphases showing variable numbers	59
	of chromosomes (a) A metaphase with 40 chromosomes, (b) A metaphase with 38 chromosomes (c) A metaphase with 37 chromosomes (d) A metaphase with 36 chromosomes	3 .
Fig.(24).	Group 1-3 and sex chromosome from 10 analysed metaphases with two missing autosomes. Note the absence of one autosome in one occasion; refer to fig 25.	61
Fig.(25).	Autosomes of group 4-10 with two missing chromosomes refer to fig 24.	62
Fig.(26).	Autosomes of group 14-20 corresponding to those in fig 24.Note the two missing chromosomes in the upper 6 occasions.	63
Fig.(27).	Autosomes of group 11-13 from the analysed 10 metaphases with 40 chromosomal count.	64
Fig.(28).	Group 1-3 and sex chromosomes from 7 metaphases with 38 chromosomal count.	65
Fig.(29).	Autosomes of group $4-10$ corresponding to those in fig 28.	66
Fig.(30).	Autosomes of group 11-13 corresponding to those in fig 28.	67
Fig.(31).	Autosomes of group 14-20 corresponding to those in fig 28.	68
Fig.(32).	Autosomes of group 1-3 and sex chromosomes from 4 metaphases with 37 chromosomal count.	69

		page
	autosomes of group 4-10 corresponding to chose in fig 32.	70
Fig.(34).	Autosomes of group 11-13 corresponding to chose in fig 32.	71
	Froup 14-20 corresponding to those in fig 32.	72
f	Autosomes of group 1-3 and sex chromosomes From 6 analysed metaphases with 36 chromosomal count.	74
Fig.(37)	Autosomes of group 4-10 corresponding to those in fig 36. Note the missing autosomes.	75
Fig.(38)	Group 11-13 corresponding to those in fig 36.	76
Fig.(39)	Autosomes of group 14-20 corresponding to those in fig 36.	77
Fig.(40)	Several metaphases from newly borns to treated male parents, showing increased numbers of shrunken chromosomes.	78
Fig.(41).	Autosomes of group 1-3 and sex chromosomes from 6 polyploid metaphases. Note the chromosomal count between brackets.	79
Fig.(42).	Autosomes of group 4-10 corresponding to those in fig 41. and showing the extra chromosomes.	80
Fig.(43).	Autosomes of group 11-13 corresponding to those in fig 41.	81
Fig.(44).	Autosomes of group 14-20 corresponding to those in fig 41 and showing the extra chromosomes.	82
Fig.(45).	Dicentric in chromosomes of group 1-3 from metaphases of newly borns to treated male parents.	83
Fig.(46).	Acentric fragments.	84
Fig.(47).	A Chromosomal break.	85
Fig (48)	Evaluate figures	86

		~~
Fig.(49).	Autosomes of group 1-3 (up) and group 11-13 (down) of 3 analyzed polyploid cells from newly borns totreated male parents by a high dose of β -sitosterol.	pag 88
Fig.(50).	The extra chromosomes in groups 4-10 (up) and 14-20 (down) corresponding to those in fig 49.	89
Fig.(51).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13(down) from 4 metaphase with 2 missing chromosomes from newly borns to treated female parents.	92
Fig.(52).	Autosomes of group 4-10 corresponding to those in fig 51. Note the 2 missing chromosomes, refer to fig 53.	93
Fig.(53).	Autosomes of group 14-20 crossponding to those in fig 51 & 52. Note the missing chromosomes.	94
Fig.(54).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13(down) from 4 analyzed metaphases with 38 chromosomal counts from newly borns to treated female parents.	95
Fig.(55).	Autosomes of group 4-10 corresponding to those in fig 54. Note the missing chromosomes.	96
Fig.(56).	Autosomes of group $14-20$ corresponding to those in fig $54 \& 55$. Note the missing chromosomes.	97
Fig.(57).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) of 2 analyzed metaphases with 36 chromosomal count.	98
Fig.(58).	Autosomes of groups 4-10 (up) and 14-20 (down) corresponding to those in fig 57. Note the 6 missing chromosomes.	99
Fig.(59),	Some metaphases from newly borns to treated female parents, showing polyploid chromosomes.	101
Fig.(60).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) from 4 analyzed polyploid cells of newly borns to treated female parents.	102

Fig.(61).	The extra chromosomes in groups 4-10(u) and 14-20 (down) corresponding to those in fig 60.	page 103
Fig.(62).	Dicentric chromosomes in metaphases from newly borns to treated female parents.	105
Fig. (63).	Exchange figures (up) and chromosomal breaks(down)from metaphases of baby rats to treated female parents.	106
Fig.(64).	Several metaphases from newly borns to treated female parents, showing acentric fragments.	107
Fig.(65).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) from 4 analyzed metaphases with 40 chromosomal count from newly borns to treated both parents.	109
Fig.(66).	Autosomes of groups 4-10 (up) and 14-20 (down) corresponding to those in fig 65. Note the 2 missing chromosomes.	110
Fig.(67).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) of 4 analyzed metaphases with 4 missing chromosomes from newly borns to treated both parents.	111
	Autosomes of groups 4-10 (up) and 14-20 (down) corresponding to those in fig 67. Note the missing chromosomes in both groups.	112
Fig.(69).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) from metaphases with 36 chromosomal count. Note the missing autosome.	113
(Autosomes of groups 4-10 (up) and 14-20 (down) corresponding to those in fig 69. Note the 6 missing chromosomes.	114
Fig.(71).	Metaphases with shrunken chromosomes from newly borns to treated both parents.	117
Fig.(72).	Autosomes of group 1-3 & sex chromosomes (up) and group 11-13 (down) of 4 polyploid metaphases from newly borns to treated both parents.	118

Fig.(73).	Autosomes of group 4-10 corresponding to	Page 119
	those in fig 72.Note the extra chromosomes.	
Fig.(74).	Autosomes of group $14-20$ corresponding to those in figs 72 & 73 . Note the extra chromosomes.	120
Fig.(75).	Dicentric chromosomes (d) and exchange figures (e).	121
Fig.(76).	Acentric fragments (a) and chromosomal breaks (b).	122
Fig.(77).	Recovery from $eta-$ sitosterol damage under treatment of mature males by a low dose.	126
Fig.(78).	The chances for recovery from $oldsymbol{eta}$ -sitosterol damage under treatment of mature males by a high dose.	127
Fig.(79).	Foetol deaths post treatment of parents .	130
Fig.(80).	Numarical deviations in metaphases from newly borns to treated parents.	133
Fig.(81).	Percentage of the normal count of chromosomes of the examined meta p hases from newly borns to treated parents.	135
Fig.(82).	Percentage of metaphases with missing chromosomes from newly born rats to treated parents.	137
Fig.(83).	Percentage of polyploid metaphases from newly born rats to treated parents.	138

INTRODUCTION

INTRODUCTION

Phyto-estrogens are compounds that are believed to be found in some plants that are used in regular feeding of farm animals. They are presumed to be involved as causative agents of infertility of these animals. Their effect ranges from oestrogenic activity to infertility of these animals. For this reason, they attracted the attention of many investigators.

Samuel, (1967) made a literature review of the factors that have to be taken into consideration for the evaluation of plant destrogens on animal reproduction. He recommended the amounts of destrogens under, different environmental conditions, their effectivness and the response of various animal species to be taken into consideration.

The approach for study of these compounds followed various routes.

One of these routes included the attempts to isolate some extract with one or another destrogenic effect .

Alexander and Rossiter, (1952) made a comparative bioassay of extracts from clover (Trifolium subterraneum L.) under various conditions of treatment with fertilizers as a factor affecting eostrogenic potency of clover.

Curnow, (1954) described a method for extraction by which he could separate genistein from 4 subterranean clovers out of 8 species. He suggested an explanation for infertility in