10-140/4

SOME PHYSIOLOGICAL RESPONSES OF CERTAIN

BREEDS OF RABBITS TO CLIMATIC

CHANGES

В٧

AHMED MOHAMED AHMED ESMAIL

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

[Carthard

MASTER OF SCIENCE

IN AGRICULTURE

(ANIMAL PHYSIOLOGY)

2t543

ANIMAL PRODUCTION DEPARTMENT

FACULTY OF AGRICULTURE

AIN SHAMS UNIVERSITY

1988

APPROVAL SHEET

TITLE: SOME PHYSIOLOGICAL RESPONSES OF CERTAIN BREEDS OF RABBITS TO CLIMATIC CHANGES.

AHMED MOHAMED AHMED ESMAIL

THIS THESIS HAS BEEN APPROVED BY:

PROF. DR.: Jorghum....

PROF. DR.: E.A. Koxby

COMMITTEE IN CHARGE

DATE: 30/ 5 /1988

CONTENTS

P	age
* INTRODUCTION	1
* REVIEW OF LITERATURE	3
I- Effect Of High Ambient Temperature On Some	
Physiological Parameters In Mammals	3
1- Rectal Temperature (R T)	3
2- Hematocrit Value (Ht %)	7
II- Effect Of High Ambient Temperature On Some	
Reproductive Phenomena	9
1- Ovulation Rate 1	0
2- Number Of Implantation Sites 1	1
3- Pre-Implantation Embryonic Survivability 1	2
4- Post - Implantation Embryonic Survivability 1	3
5- Litter Size 1	5
6- Post-natal Mortality Rate 1	.6
7- Birth Weight And Growth Of Young 1	.9
* MATERIAL AND METHODS	25
- Experimental Animals 2	25
- Techniques And Procedures	27
* RESULTS AND DISCUSSION	30
Effect Of High Ambient Temperature On Some	
Physiological Parameters In Mammals	30

1- Rectal Temperature (RT)	30
2- Hematocrit Value (Ht%)	39
Effect Of High Ambient Temperature On Some	
Reproductive Phenomena	47
1- Ovulation Rate	47
2- Number Of Implantation Sits	50
3- Pre-Implantation Embryonic Survivability	54
4- Post - Implantation Embryonic Survivability.	56
5- Litter Size	60
6- Post-natal Mortality Rate	64
7- Birth Weight And Growth Of Young	67
* GENERAL DISCUSSION	73
* SUMMARY	85
* REFERENCES	91
* ARABIC SUMMARY	

LIST OF TABLES

Table	1	and 1-a. Means (+ SE) for rectal temperature	ge
		at mating and ANOVA 3	6
Table	2	and $2-a$. Means (\pm SE) for rectal temperature	
		at different durations of heat exposure and	
		ANOVA3	7
Table	3	and 3-a. Means (\pm SE) for rectal temperature	
		at day 22 of pregnancy and ANOVA 3	8
Table	4	and 4-a. Means (+ SE) for hematocrit value at	
		mating and ANOVA 4	4
Table	5	and 5-a. Means (\pm SE) for hematocrit value at	
		different durations of heat exposure and	
		ANOVA 4:	5
Table	6	and 6-a. Means (+ SE) for hematocrit value at	
		day 22 of pregnancy and ANOVA4	6
Table	7	and 7-a. Means (± SE) of ovulation rate and	
		ANOVA	9
Table	8	3 and 8-a. Means (\pm SE) of implantation sites	
		and ANOVA5	3

Table 9 and 9-a. Means (\pm SE) of number of survival
embryos. and ANOVA
Table 10 and 10-a. Means (\pm SE) of litter size and
ANOVA 63
Table 11. Post-Natal mortality rate (%) of young
rabbits 66
Table 12 and 12-a. Means (\pm SE) of birth weight and
ANOVA 70
Table 13 and 13-a. Means (<u>+</u> SE) of wearing weight and ANOVA
Table 14. Means of body gain in weight for the young rabbits during suckling period
Appendix Table I: Means (<u>+</u> SE) for rectal temperature
(C) of rabbits during pregnancy 112
Appendix Table II: Means (± SE) for per cent
hematocrit value of rabbits during pregnancy 113
Appendix Table III: Means (± SE) of young body weights
at birth and during suckling period

LIST OF FIGURES

Fig. 1 Rectal temperature of different breeds of rappits
at mating
Fig. 2 Changes in rectal temperature of different breeds
of rabbits at different durations of heat exposure
Fig. 3 Rectal temperature of different breeds of rabbits
at the beginning of the 4th weeks of pregnancy
Fig. 4 Percent hematocrit value of different breeds of
rabbits at mating
Fig. 5 Changes in the percent hematocrit value of
different breeds of rabbits at different durations of
heat exposure
Fig. 6 Percent hematocrit value of different preeds of
rabbits at the beginning of the $4th$ weeks of pregnancy.
Fig. 7 Number of corpora lutea of different breeds of
rabbits
Fig. 8 Number of implantation sites of different breeds
of rabbits
Fig. 9 Percent of preimplantation survivability of
different breeds of rabbits.

Fig. 1	O Percent of embryo survival of different breeds
of rabb	nits
Fig. 1	1 Percent of post-implantation survivability of
differe	ent breeds of rabbits
Fig. 12	Total mortality rat of rabbits
Fig. 1	3 A, B, C, Weekly mortality rate of New Zealand
White,	Baladi Red. and Bouscat respectively ,
Fig. 1	4 A, B, C, D, Body weight (gm.) of young rabbits
during	suckling period in four groups

ACKNOWLEDGMENT

FACULTY OF AGRICULTURE, AIN SHAMS UNIVERSITY, FOR GUIDANCE AND HELP THROUGHOUT THE STATISTICAL ANALYSES OF THE DATA.

SINCERE GRATITUDE AND THANKS ARE EXPRESSED TO THE STAFF

OF THE GEZIRA EL -SHEIR POULTRY RESEARCH STATION, ANIMAL

PRODUCTION RESEARCH INSTITUTE FOR COOPERATION AND HELP.

FINALLY, I WISH TO EXPRESSES MY GREATLY INDEBTED AND GRATEFUL TO MY FATHER MR. M. A. ESMAIL, MY FAMILY FOR THEIR BLESSEDNESS KIND UNDERSTANDING AND LOVE.

FOR ALL OF THIS HELP, THE AUTHOR IS VERY GRATEFUL.

INTRODUCTION

This investigation was undertaken for the following objectives:

- 1- To study the influence of high ambient temperature (30 \pm 2 CO) on the reproductive performance in New Zealand White. Bouscat and Baladi Red female rabbits.
- 2- To study the effect of pre-coitus heat acclimation on the reproductive traits of rabbits exposed to high ambient temperature during pregnancy.
- 3- To study the differences in the reproductive traits of the local and foreign breeds of rabbits in response to different ambient temperatures.
- 4- To study the physiological responses of the different breeds of rabbits to high ambient temperature applied for different durations.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

I- Effect Of High Ambient Temperature On Some Physiological Parameters In Mammals.

<u>I-1.</u> Rectal Temperature (RT):

Rectal temperature is considered as a good overall indicator of body core temperature (Bianca, 1968). Body temperature is a balance between heat production and heat loss (Ulberg, 1971). The rabbit has a poor ability to prevent the rise in rectal temperature at high ambient temperature (Nielsen, 1979 and El-Sobhy, 1981).

Howarth et al.. (1965) found a significant increase in rectal temperature in female rabbits when shifted from 21 C to 32 C air temperature. After two days of heat exposure the mean rectal temperature of all groups of females maintained at 32 C remained significantly higher than those maintained at 21 C with 0.9 C increase in their average rectal temperature. Nielsen (1979) found that rectal temperature of rabbits was increased from 41 C at 38 C ambient temperature to 42 C at 40 C ambient temperature. White angora rabbits did not tolerate a 7 hours exposure at room temperature exceeded 38 C (Nielsen, 1979). Rectal temperature of these rabbits was elevated to 42 C within 2 to 5 hours of heat exposure. These authors concluded that rabbit can tolerate ambient