1121311

CONTRIBUTIONS TO THE MINERALOGY OF EGYPTIAN BLACK SANDS

ВҮ

YOUSRIYA MOHAMED MAHMOUD SAMY

(B.Sc.)

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

IN GEOLOGY

553-62

Department of Geology
Faculty of Science
Ain Shams University

1987

Eglal Jiagy

AND SUBLET

NOTE

The present thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Geology.

Besides the research work materialized in this thesis, the candidate has attended eight post-graduate courses for one year in the following topics:

- 1- Geological maps
- 2- Laboratory Geological methods
- 3- Geochemistry
- 4- Photogeology
- 5- Igneous petrology
- 6- Sedimentary petrology
- 7- Metamorphic petrology
- 8- Sedimentology

She has successfully passed the final examinations in these courses.

In fulfillment of the language requirements of the degree, she has also passed the final examination of a course in English language.

Prof. Dr. Mohamed El-Amin Bassuni

Head, Department of Geology

ACKNOWLEDGEMENT

The author wishes to express her deep gratitudes to Dr. Ezzeldin Helmy, Professor of Mineralogy and Petrology, Ain Shams University for continuous encouragement, useful remarks and critical reading of the manuscript.

The author is much indebted to Prof. Dr. Essam E. El-Hinnawi, Head of Earth Sciences Laboratory. National Research Center, for supervision and planning of the present work, for guidance and unfailing help during the preparation of the thesis.

The author is grateful to Dr. Eglal A. Niazi, Associate Research Professor. Earth Sciences Laboratory, National Research Center, for supervising the present work, for her continuous help during the progress of the study and reading of the manuscript.

The author wishes to thank Prof. Dr. M.A. Bassuni, head of Geology Department, Ain Shams University, for facilities offered during the presentation of the thesis.

Finally, the author is also grateful to all the staff members of the Earth Sciences Laboratory, National Research Center for their sincere co-operation.

ABSTRACT

The present study has been carried out to determine the different textural and mineralogical characteristics of the beach sand sediments (the so called diluted black sands) along the Nile Delta coast between Rosetta and Dameitta, and to describe in detail the properties of quartz and some heavy minerals (zircon, amphiboles, pyroxenes) and their distribution. A comparison between the deltaic beach sediments and both of Nile sediments and sands is also carried out. The results obtained are used to explain the process of formation of the diluted black sand deposited along the Nile Delta coast.

Detailed study of the grain size analysis of both beach sands and Nile sediments and of various related statistical parameters (e.g. Mean Size; Mz, Inclusive Graphic Standard Deviation; $\sigma_{\rm I}$, Inclusive Graphic Skewness; SK and Inclusive Graphic Kurtosis, Kg) are carried out. These revealed that the beach sands were derived from Nile sediments through hydrodynamic processes that resulted in removal of silt and clay fractions as well as causing better sorting of the sand fraction.

The main heavy minerals encountered are the opaque minerals (essentially magnetite and ilmenite), amphiboles, pyroxenes, epidote, garnet, zircon, rutile, monazite and staurolite. The distribution of various grain sizes of heavy minerals is discussed in detail and revealed a marked variation both along the shore line and normal to it.

The relationship between amphiboles, opaque minerals and pyroxenes for beach sands, Nile sediments and Nile sands indicates that the beach sands of the Nile Delta are mainly Nile sediments that were subjected to selective sorting action of waves and wind along the beach.

Opaque minerals express a strong negative correlation with either pyroxenes or amphiboles, meanwhile pyroxenes and amphiboles are positively correlated. These relationships are

due to depositional and sorting selectivity between the different minerals. Such selective processes are controlled by the specific gravity of the mineral concerned and by the size and shape of its particles.

The shape analysis study of quartz grains indicates that the coarser the grains the better the roundness they are, and that the roundness decreases eastward from Rosetta particularly for fine and very fine grain sizes due to the action of the eastward currents. The quartz grains in all size classes in the backshore sediments are more rounded than those in the foreshore sediments, this is due to the hydrodynamic and sorting effects of waves. The roundness of quartz grains in the dunes at Baltim does not differ markedly from those in the nearby backshore.

Although the study indicates that undulatory quartz grains are generally less abundant at Rosetta than at Baltim and Gamasa, yet their is no significant trend in the distribution of polycrystalline quartz grains neither along the shoreline nor perpendicular to it.

Dimensional measurements of the separated zircons revealed that their grain size varies proportionally with elongation and inversely with both length and breadth. In Baltim, the elongation of zircon is found to increase from the foreshore area back to the coastal dunes.

Microscopic examination together with X-ray diffraction and chemical analyses for the separated amphiboles and pyroxenes indicate that the former are mainly magnesio-hornblende with some oxyhornblende, and that the latter are essentially augite with subordinate hypersthene.

LIST OF CONTENTS

•	Page
NOTE	
ACKNOWLEDGEMENT	
ABSTRACT	
LIST OF FIGURES	
LIST OF TABLES	
CHAPTER I : INTRODUCTION	1
•	
- Purpose of the Present Study	7
CHAPTER II : GEOMORPHOLOGY OF THE NILE DELTA COASTAL PLAIN	
AND SAMPLING	9
- Sampling	12
	12
CHAPTER III : GRAIN SIZE ANALYSIS	16
- Statistical Analysis of Grain Size Data	23
- The Statistical Parameters of Folk and Wara	25
CULDINED TV . WINEDLIAGE OF THE CO.	
CHAPTER IV: MINERALOGY OF BEACH SANDS BETWEEN ROSETTA AND	
DAMIETTA	42
- Distribution of Heavy Minerals in Beach Sands	45
- Variation of Heavy Minerals Distribution Along the	
Beach	50
- Variation of Heavy Minerals Normal to the Shoreline.	5 1
- The Relationships Between Different Heavy Minerals	53
CHAPTER V: CHARACTERISTICS OF QUARTZ IN THE BEACH SANDS	
BETWEEN ROSETTA AND DAMIETTA	62
- Shape Analysis of Quartz Grains	64
- Undulatory Extinction and Polycrystallinity in Quartz	80
CHAPTER VI : CHARACTERISTICS OF SOME HEAVY MINERALS FROM THE	
BEACH SANDS BETWEEN ROSETTA AND DAMIETTA	90
1 - Zircon	90
- Classification of Zircons	91
- Dimensional Parameters of Zigrons	9 I

	Page
- Variation in Elongation of Zircon with Size	98
Variation in Elongation of Zircons Across the Coast.Statistical Interpretation of the Relationship	101
Between Length and Breadth of Zircons	101
2- Amphiboles	107
- Problems of Identification and Nomenclature	108
- Amphiboles in the Beach Sands	109
- Composition of Amphiboles	114
3- Pyroxenes	117
SUMMARY AND CONCLUSIONS	126
REFERENCES	133
ADADIC CHMMADY	

LIST OF FIGURES

ig. No.		Page
1 -	Map showing ancient shoreline of the Nile Delta and the old tributaries	10
2-	Location map	14
3-	Cumulative percentage distribution of grain sizes, Rosetta beach sands	18
4 –	Cumulative percentage distribution of grain sizes, Baltim beach sediments	19
5-	Cumulative percentage distribution of grain sizes, Gamasa beach sediments	20
6-	Cumulative percentage distribution of grain sizes, Ras El-Bar beach sediments	22
7-	Cumulative percentage distribution of grain sizes, Nile sands separated from Nile sediments	24
8-	The relationship between the Mean Size (Mz) and Inclusive Graphic Standard Deviation (σ_{I}) of beach sediments	29
9-	The relationship between Mean Size (Mz) and Inclusive Graphic Standard Deviation $(\sigma_{\underline{I}})$ for Nile sediments	31
10-	The relationship between Mean Size (Mz) and Inclusive Graphic skewness (SK _I) of beach sediments	33
11-	The relationship between Mean Size (Mz) and Inclusive Graphic Skewness (SK _I) of Nile sediments	34
12-	The relationship between Mean Size (Mz) and Graphic Kurtosis ($K_{\overline{G}}$ ') of beach sediments	35
13-	The relationship between Mean Size (Mz) and Graphic Kurtosis (K_G ') of Nile sediments	36
14-	The relationship between Inclusive Standard Deviation	38
	T	

16- Distribution of heavy minerals in beach sands (size fraction 0.250-0.125 mm)	ıge
tion 0.250-0.125 mm)	40
tion 0.125-0.063 mm). 18- The relationship between opaques, amphiboles and pyroxenes 5 19- The relationship between pyroxenes, epidote and amphiboles 5 20- The relationship between amphiboles and opaque minerals in beach sands. 21- The relationship between pyroxenes and opaque minerals in beach sands. 22- The relationship between amphiboles and pyroxenes in beach sands.	47
19- The relationship between pyroxenes, epidote and amphiboles 20- The relationship between amphiboles and opaque minerals in beach sands	49
19- The relationship between pyroxenes, epidote and amphiboles 20- The relationship between amphiboles and opaque minerals in beach sands	54
20- The relationship between amphiboles and opaque minerals in beach sands	56
in beach sands	57
beach sands 5	58
	59
23- Percentage distribution of different roundness classes in beach sands	72
24- Plot of quartz grains in the double triangle diagram of Basu et al (1975)	88
25- Photomicrographs of zircon grains showing different forms and inclusions X45 9	93
26- Photomicrographs of zircon grains showing different forms and inclusions X459	94
27- Distribution of length, breadth and elongation in Rosetta zircons	00
28- Distribution of length, breadth and elongation in Baltim zircons (size fraction 0.125-0.063)	02
29. The Peducid Material Society	06
30- Y-ray difference control	11

Fig. No	P	age
31- Classification of calcic amphiboles according t	o IMA	116
32- X-ray diffractograms of pyroxenes showing the m	main peaks	119
33- Distribution of pyroxene analyses with respec	ct to Ca,	
Mg, and $(Fe^{+2} + Fe^{+3} + Mn)$ atoms		124

LIST OF TABLES

Table No.	Dage
1- Phi values read from the cumulative curves	Page 27
2- Calculated grain size statistical parameters	28
3- Distribution of heavy minerals in the beach sands (size fraction 0.250-0.125 mm)	46
4- Distribution of heavy minerals in the beach sands (size fraction 0.125-0.063 mm)	48
5- Percentage distribution of roundness classes in quartz grains of beach sands between Rosetta and Damietta	66
6- Calculated roundness (Rho values) for different size fractions	77
7- Distribution of polycrystallinity in quartz grains	84
8- Distribution of undulatory extinction in quartz grains	86
9- Distribution of different classes of zircons	92
10- Statistical data for zircons	105
11- X-ray powder diffraction data for amphiboles	113
12- Chemical analysis (wt. %) of amphiboles and their calculated number of ions on the basis of 24 (O, OH)	115
13- X-ray powder diffraction data of pyroxenes	122
14- Chemical analyses (wt. %) of pyroxenes and their calcul-	
ated number of ions on the basis of 6 oxygenes	123

This research work
was carried out in the
Earth Sciences Laboratory
National Research Center,
Cairo, Egypt.

CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

Black sands are known to occur along the shores of the Nile Delta especially at the Nile outpourings near Rosetta and Damietta. The sands have been described as "black" due to the presence of different proportions of dark heavy minerals.

The black sands of Rosetta were briefly described by Shukri (1945) and Hilmy (1951). The first detailed studies of these sands were carried out by Higazy and Naguib (1958), Rittmann and Nakhla (1958) and Nakhla (1958); Higazy and Naguib (1958) described the geological and radiometric surveys carried out along the Mediterranean beach of the Nile Delta. They pointed out that there are two modes of occurrence of black sands. The first is the "concentrated ore" which is very dark in colour and contains from 70 to 90 per cent heavy minerals. The second which is called the "diluted ore" constitutes most of the sand deposits along the beaches of the Delta and contains up to 40 per cent of the dark heavy minerals. Higazy and Naguib estimated the amount of the heavy minerals present in the black sands to be not less than 25 million tonnes. The main economic minerals encountered are ilmenite, magnetite, zircon, rutile, monazite and garnet. The same authors discussed the mechanism of deposition of the black sands and pointed out that they were derived from