BIOCHEMICAL STUDIES ON CARBOHYDRATE METABOLISM IN NORMAL AND EXPERIMENTALLY DIABETIC RATS

THESIS

Submitted to
The Faculty of Science
Ain Shams University

In Partial Fulfilment of the Degree of MASTER OF SCIENCE

By
AZZA AHMED ATEF MAHMOUD

Demonstrator
In the Department of Biochemistry
Ain Shams University

1985

BIOCHEMICAL STUDIES ON CARBOHYDRATE METABOLISM IN NORMAL AND EXPERIMENTALLY DIABETIC RATS

THESIS

Submitted to The Faculty of Science Ain Shams University

In Partial Fulfilment of the Degree of MASTER OF SCIENCE

BY

AZZA AHMED ATEF MAHMOUD

Demonstrator

In the Department of Biochemistry

Ain Shams University

SUPERVISORS

Prof., Dr. ABO EL-MONEM EL-GAUHARI
Head of Biochemistry Department
Faculty of Science
Ain Shams University

Prof.,Dr.ABD EL-HALIM ABD EL HADI MOUSTAFA
Prof.,Of Biochemistry
Faculty of Science
Ain Shams University

Prof., Dr. FAWZIA MOHAMED REFAI

Prof., of Biochemistry

Faculty of Science

Ain Shams University

1985

ACKNOWLEDGEMENT

I wish to express my gratitude and thanks to Professor Dr. ABD EL-MONEM EL-GAUHARI: Head Of Biochemistry Department, Faculty of Science, Ain Shams University, for suggesting the problem, providing laboratory facilities of the department, and my deep thanks to professor Dr. ABD EL-HALIM ABD EL-HADI MOUSTAFA Professor Of Biochemistry, Faculty Of Science, Ain Shams University for his assistance trustful help and sincere guidance which he offered throughout this thesis.

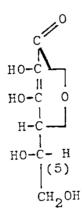
Finally I am also deeply gratful to Prcfessor Dr. Fawzia M. REFAI Professor Of Biochemistry Ain Shams University for her tutorial guidance and active supervision.

CONTENTS

	Page
PAPT I	
THEORETICAL SECTION	
A. Chemical And Biochemical Studies	1
B. Review of Literature	18
PART II	
MATERIAL AND METHODS.	
A. Animal And Diet	54
B. Chemical Analysis	58
1. Determination of serum glucose	58
2. Determination of serum ascorbic.acid	62
3. Petermination of serum cholesterol	65
4. Determination of serum pyruvic acid	63 ·
5. Determination of serum lactic acid	71
6. Determination of serum lactate dehydrogenase	
enzyme activity	74
7. Determination of liver glucose -6-phosphatase	
enzyme activity	78
8. Determination of liver phosphorylase enzyme	
activity	82
9. Determination of liver phosphoglucomutase	÷
enzyme activity	85
10. Determination of liver glycogen ,	88
ll. Determination of muscle glycogen	90

	Page
PART III	•
RESULTS	93
PART IV	
DISCUSSION	145
PART V	
SUMMARY	174
PART VI	
REFERENCES	176
PART VII	
ADADIC STUMARY	

PART I

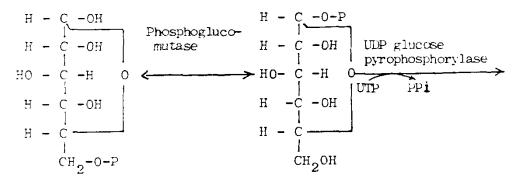

THEORETICAL SECTION

- A CHEMICAL AND BIOCHEMICAL STUDY
- B REVIEW OF LITERATURE

A. CHEMICAL AND BIOCHEMICAL STUDIES

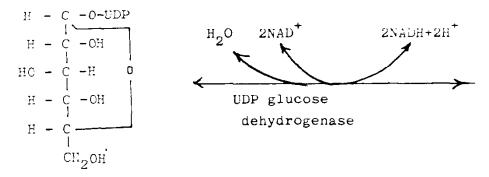
Ascorbic acid

Vitamin C or ascorbic acid was first isolated in pure crystalline form from lemon juice by the American Biochemists King & Waugh in 1932. It is one of the simplest vitamins in structure, being a lactone of a sugar acid, (Lehninger, 1975).


Ascorbic acid.

A general method of preparing ascorbic acid involves the condensation between polyhydroxy aldehyde e.g. L-threose (n=2) and ethyl glyoxylate in the presence of sodium cyanide. The intermediate 3-oxoderivative (not isolated) is then hydrolyzed with acid. (Finar, 1975).

Ethyl
$$CO_2$$
Et CO_2


Ascorbic acid

Most species of animals can synthesize ascorbic acid except guinea pig and man. They synthesize the vitamin from D-glucose via the glucuronic acid pathway Fig. (1). (Harper, et al. 1977).

Glucosé -6-phosphate

Glucose -1-phosphate

Uridine diphosphoglucose

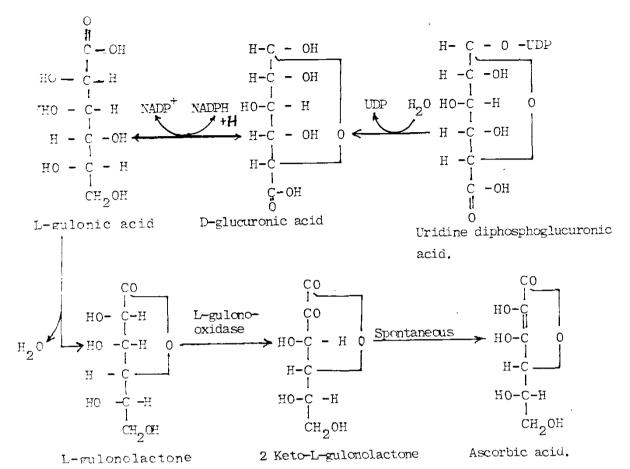
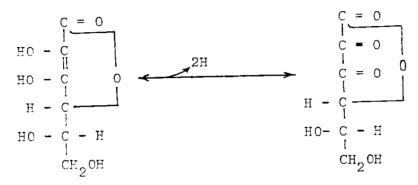



Fig. (1) Glucuronic acid pathway.

Pure ascorbic acid is a white crystalline solid freely soluble in water. The molecular formula was shown to be ${\rm C_6E_8O_6}$ and m.p. $192^{\rm O}{\rm C}$. (Finar, 1975).

Vitamin C is readily oxidized to the dehydroform. Both forms are physiologically active and both are found in the body fluids. The enedial group of ascorbic acid (from which removal of hydrogen occurs to produce the dehydroform) may be involved in the physiologic function of this vitamin. It is conceviable that this chemical

grouping functions in a hydrogen transfer system; a role of the vitamin in such a system. (Harper, et al. 1977).

Ascorbic acid

dehydroascorbic acid

Studies with L-ascorbic labeled in the various positions with isotopic carbon 14 have shown that the vitamin is extensively oxidized to respiratory CO₂ in rat. Correspondingly, ascorbic acid disappears slowly in man; it has a half-life of about 16 days in man compared to a half life of about 4 days in the guinea pig.

L-ascorbic acid $-1-^{14}$ C is converted to labeled urinary oxalate in man ,guinea pig and rats. In man conversion of ascorbic acid to oxalate may account for the major part of the endogenous urinary oxalate. (Harper, et al.1977).

The biochemical function of ascorbic acid is still not known. Probably the most clearly established functional role of the vitamin is in maintaining the

normal intracellular material of cartilage, dentine, and bone. There are also a number of reports of a possible function of ascorbic acid in oxidation - reduction systems, coupled with glutathione, cytochrome C, pyridine nucleotides or flavin nucleotids. The vitamin has been reported to be involved in the exidation of tyrosine and in the metabolism of adrenal steroids and of various drugs. (Harper, et al 1977).

Barbituric acid

Barbituric acid (malonylurea) was originally prepared by condensing urea with malonic acid in the presence of phosphoryl chloride . (Finar, 1975).

Barbituric acid is a solid substance, m.p. $253^{\circ}C$ and is not very soluble in water. It is soluble in distilled water, heated to $75^{\circ}C$ the solution then couled to $40-45^{\circ}C$ and immediately used. (Martinz, 1955).

Barbituric acid is the parent compound of the barbiturate series. The majority of the clinically useful barbiturates are obtained by making appropriate substitutions at position (5) in the molecule e.g. phenobarbitone is ethylphenylbarbituric acid.

Phenobarbitone

If thiourea instead of urea is combined with malonic acid, the resulting thiobarbituric acid is the parent compound of ultra short acting intravenous anaesthetics such as thiopentone.

thiourea . malonic acid

thiobarbituric acid

An increase in the potency and a decrease in the duration of action can be produced by increasing the length of the alkyl groups on C_5 , by the substitution of alicyclic, branched, or unsaturated side—chains for alkyl groups on C_5 and by the attachment of an alkyl group to one of the nitrogen atoms of the ureide.

For many years, the therapeutically useful barbiturates have been classified according to their duration of action this being based on animal experiments. They were divided up into ultra short, short, medium and long acting barbiturates.

I. Long acting (8 to 12 hours or longer).

Barbitone — 5,5 diethylbarbituric acid.