URINARY GROWTH HORMONE EXCRETION AS A SCREENING TEST FOR GROWTH HORMONE DEFICIENCY

THESIS

Submitted in partial fulfillment for the Degree of (M.Sc.) in **Pediatrics**

By **Azzah Hassan Tayim**

(M.B., B.Ch.) Ain Shams University

Under the supervision of:

Prof.Dr. Mohamed Salah-El-Din El-Kholy

618-920075

Prof. of Pediatrics Faculty of Medicine Ain Shams University

Dr. Heba Hassan El-Sedfy

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Dr. Gamal Mohamed Mabrouk

Ass.Prof. of Biochemistry Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1994 عَلْمَ الإِنْسَيْنَانَ مَإِلَمْ يَعْبَالُمْ العشكق، ١-

To My Mother

Acknowledgement

I wish to express my deepest thanks and gratitude to Professor Dr. Mohamed Salah El Kholy, Professor of Pediatrics, Ain Shams University for his continuous guidance, help, encouragement, and generous advice throughout the work.

I would like also to appreciate the help afforded by Dr. Heba Hassan El Sedfy, Lecturer of Pediatrics, Ain Shams University.

Also I am very grateful to Dr. Gamal Mohamed Mabrouk, Assistant Professor of Biochemistry, Ain Shams University, for his close supervision of the bractical part of this work.

Finally I am glad to express my deep appreciation for the Oncology Diagnostic Unit and its members for their help.

ABBREVIATIONS

8	
LL	Acute Lymphoblastic leukaemia
^I SABA	Gamma amino butyric acid
3H	Growth hormone
^a HBP	Growth hormone binding protein
HD	Growth hormone deficiency
^e ;HRH	Growth hormone releasing hormone
GF-1	Insulin like growth factor 1
GFBPs	Insulin like growth factor binding proteins
₃ GHD	Isolated growth hormone deficiency
aRNA	Messenger RNA
MD .	Neurosecretory dysfunction
`BI	Total body irradiation
ig.	-

CONTENTS

	Page
INTRODUCTION AND AIM OF THE WORK	
PITUITARY GLAND	
Embryology	
Cell Types in the Anterior Pituitary	
Cell types in the Anterior Pituitary	. 4
GROWTH HORMONE (GH)	. 4
a. Physiology of GH	. 4
b. Hypothalamic Control of GH Secretion	. 5
c. Stimuli Affecting GH Secretion	. 8
a. Domacomearms	
c. Actions of GH	
I- On Body Composition	. 13
II- Action on Intermediary Metabolism	. 14
AETIOLOGY AND PATHOGENESIS OF GH DEFICIENCY	. 17
Classification	
I. Organic GHD : Congenital Forms	
II. Organic GHD : Acquired Forms	
III. Idiopathic GHD	. 29
IV. Genetic Forms of GHD	. 32
TESTING GROWTH HORMONE SECRETION	
y Diagnosis of GhD	
Factors interfering with Interpretation	
Preparation for tests	. 43
Secretion of GH	
I. Direct Assay	
II. Indirect evaluation of secretion in plasma	
III. Physiological Stimuli	. 48
t IV. Pharmacological Stimuli	. 52
RECOMMENDATIONS OF TESTS FOR GH DEFICIENCY	
OR CLINICAL USE	. 59
REATMENT OF GROWTH HORMONE DEFICIENCY	. 63
Role of GH in the treatment of GHD	
Role of Insulin Like Growth Factor-I	. 05
in the treatment of GHD	65
Role of GHRH in Therapy	
PATIENTS AND METHODS	. 66
PATTENTO AND REINODS	. 67
RESULTS	. 70
DISCUSSION	
UMMARY	
REFERENCES	
RABIC SUMMARY	

LISTS OF TABLES

	page
Table 1. Stimulating and depressing influences on secretion of human GH	42
Table 2. Stimulation of human GH in serum: Physiological and Pharmacological stimuli	51
Table 3. Recommendations for stepwise investigations of short stature and growth hormone deficiency	61
rable 4. Clinical and growth hormone parameters of patients with GHD	72
able 5. Clinical and growth hormone parameters of the control group	73
rable 6. Wilcoxon Signed Rank test for the growth hormone level in urine for both patients and control groups	73
'able 7. Correlation between growth hormone excretion in trine and both insulin and clonidine provocation tests	74
able 8. Correlation between growth hormone excretion in urine and standard deviation scores of the height of the patients	74

LIST OF FIGURES

	page
igure 1. Principle of the immunoradiometric assay	69
rigure 2. Correlation between GH in 24-hour urine and insulin provocative test	75
'igure 3. Correlation between GH in 24-hour urine and clonidine provocative test	75
rigure 4. Correlation between GH and the mean of both insulin and clonidine provocative tests	76
rigure 5. Correlation between GH excretion in urine and the standard deviation scores of heights of patients	76

INTRODUCTION AND AIM OF WORK

NTRODUCTION

Secretion of growth hormone (GH) from anterior pituitary gland is pulsatile and greatest during slow wave sleep. Screening tests for growth hormone leficiency in current use are based on this observation and therefore require wernight tests. Alternatively secretion during the day can be stimulated by drugs Walker et al., 1990).

Pharmacological stimulation was found to underestimate spontaneous GH ecretion in 10-20% of children (Donaldson et al., 1991).

Both types of tests require repeated blood sampling, are time consuming, expensive and above all are unpleasant and potentially dangerous. An alternative would be the measurement of urinary growth hormone concentration which would assess integrated growth hormone secretion (Walker, 1990).

JM OF THE WORK

The aim of the study is to derive a reference range for urinary growth formone, to validate the assay and to establish correlation between urinary GH excretion and serum GH after provocation.

REVIEW OF LITERATURE

PITUITARY GLAND

mbryology

Ī

31

ήÇ

ni

The pituitary gland is formed in fetal life from two separate sources. The anterior and intermediate lobes of the pituitary arise in the embryo from athke's pouch, an evagination from the roof of the pharynx.

The posterior pituitary arises as an invagination of the floor of the hird ventricle. It is made up in large part of the endings of the axons that rise from cell bodies in the supraoptic and para-ventricular nuclei and pass the posterior pituitary via the hypothalamo-hypophyseal tract (Kaplan, 990).

The blood supply of the anterior pituitary consists of a systemic rterial supply, a portal blood system and a venous drainage system. The rterial supply is derived from the superior hypophyseal artery, a branch of an internal carotid artery.

The venous portal system originates from specialized straight terminal sixterioles in the median eminence, from which blood is collected in a series ref parallel veins coursing down the anterior surface of the pituitary, and reminating in the sinusoidal capillaries of the adenohypophysis. This portal system has come to be recognized as the pathway by which hypothalamic sheleasing and inhibiting substances are transmitted to the anterior pituitary Kovacs and Horvath, 1990).

The nerve supply of the anterior lobe is limited to fine nerves derived nom the carotid plexus that accompany the arteriolar branches aBesser,1977).

Sympathetic nerve fibers reach the anterior lobe from its capsule, and parasympathetic fibers reach it from the petrosal nerves, but very few nerve ibers pass to it from the hypothalamus. The nerve fibers may affect denohypophyseal blood flow but play no direct role in the regulation of denohypophyseal hormone secretion. The posterior lobe is richly innervated in the hypophyseal stalk by the supraopticohypophyseal and aberohypophyseal tracts (Kovacs and Horvath, 1990).