FACIES AND FRAMEWORK OF SEDIMENTATION OF THE MIDDLE MIOCENE OIL-BEARING CARBONATE ROCKS IN RAS FANAR OIL FIELD, GULF OF SUEZ, EGYPT

A Thesis Submitted By

WEGDAN AHMED SALEH

(B.Sc., 1983)

In Partial Fulfillment of The Requirements for The I

of

Master of Science in Geology

52.5 W A 41537

То

The Geology Department

Faculty of Science

Ain Shams University

1995

TO MY PARENTS

FACIES AND FRAMEWORK OF SEDIMENTATION OF THE MIDDLE MIOCENE OIL-BEARING CARBONATE ROCKS IN RAS FANAR OIL FIELD, GULF OF SUEZ, EGYPT

Thesis Advisors

Approval

Prof. Dr. Mohamed Mahmoud Abu-Zeid

Prof. Dr. Mohamed Darwish Mohamed Salem

Mr. Samy Shaheen

desward M

Jam' Staheen

Prof. Dr. W. M. Abdel Malik

Chairman of the Geology Dpartment

Faculty of Science, Ain Shams University

M. Walnulid

NOTE

This thesis is submitted to the Faculty of Science, Ain Shams University, in partial fulfillment of the requirements for the degree of Master of Science in Geology.

Beside the research work materialized in this thesis, the candidate has attended and successfully passed examinations in the following post-graduate courses:

- 1- Mineralogy
- 2- Sedimentary Petrology
- 3- Igneous Petrology
- 4- Metamorphic Petrology
- 5- Ore Mineralogy
- 6- Geochemistry
- 7- Sedimentation
- 8- Lab Techniques
- 9- Mapping
- 10- Statistics and Computer
- 11- English Language

Prof. Dr. W.M.Abdel Malik

Head of the Geology Department

ACKNOWLEDGEMENTS

The author is greatly indebted to *Prof. Dr. Mohamed M. Abu-Zeid* (Geology Department, Ain Shams University) for his kind supervision, sincere guidance and fruitful discussions during the various phases of this research project and for critical reviewing of the entire manuscript.

I am greatly indebted to **Prof. Dr. Mohamed Darwish** (Geology Department, Cairo University) who utterly planned and supervised all steps of this research project. Collection and interpretation of data and writing and revision of the manuscript have been carried out under his sincere guidance, constructive criticism and help.

The author gratefully acknowledges *Mr. Sami Shahin* (Exploration General Manager of Badr El-Din Co.) for suggesting the problem and for his kind supervision and constant support.

I would like to express my deep gratitude to *Prof. Dr. W.M. Abdel Malik*, Head of the Geology Department, Ain Shams University for his support and encouragement.

The author wishes to express her special gratitude to Suco's Share Holders for providing data and to Suco's Chairman *Mr. Hani Hafez* and the Exploration General Manager *Mr. Ezz Osman* for their encouragement and support.

Finally, I would like to convey my deep thanks to all Suco's Exploration staff for their help especially Mr. El-Naggar, Mr. Abd El Azim Youssef, Dr. Samir Abdel Rahman and Dr. Mohsen Mohamed.

Especial thanks to my mother for her encouragement and support.

SUMMARY

The present research project focuses on the petrographic, facies and sedimentological characteristics and reservoir properties of the subsurface oil-bearing Middle Miocene "Nullipore" carbonate sequence in the Ras Fanar Field. This sequence (400'- 980' thick) consists of limestones rich in algal fragments and nodules and rarely intercalated with marl and chert bands. It unconformably overlies the Lower Eocene Thebes Formation and underlies the Middle to Upper Miocene South Gharib Formation.

Wireline log suites (GR, FDC/CNL and BHC) of fifteen wells in the Ras Fanar Field were studied. The composite logs of some other wells were also revised. 54 core samples were examined using the naked eye, binocular microscope and conventional core analyses (helium porosity, horizontal and vertical permeabilities). In addition, about 500 thin sections were prepared from the core samples and microscopically examined. Microchemical tests using HCl (2% and 10%) and Alizarin Red "S" were conducted for the proper identification of carbonate minerals.

Study of the sonic and porosity logs combined with the core description reveal that the ""Nullipore"" sequence consists of 8 electro-lithofacies zones. They are underlain by a carbonate body (Basal Beds) which is not represented by core samples. Isochore maps of the delineated zones show remarkable lateral variations in their thicknesses.

The main facies types recognized in the carbonates are: lime mudstone, mudstone-wackestone, packstone, boundstone and packstone-boundstone. They are distributed among the electro-lithofacies zones as follows:

Zone I	sandy mudstone to wackestone (biomicrite)
Zone II	dolomitic packstone (molluscan biomicrite)
Zone III	fosssiliferous packstone to boundstone (algal biomicrite)
Zone IV	deeply weathered dolomitic wackestone to packstone (biomicrite)
Zone V	fossiliferous dolomitic wackestone to packstone (biomicrite)
Zone VI	anhydritic fossiliferous packstone to boundstone (algal biomicrite)
Zone VII	anhydritic dolomitic wackestone to packstone (algal biomicrite)
Zone VIII	anhydritic dolomitic packstone (biomicrite)

The isochore maps constructed for the delineated zones show remarkable lateral variations in their facies characteristics.

Petrographic studies on the "Nullipore" carbonates reveal that the bioclasts are made up predominantly of algal fragments and oncoides. Besides, molluscan, bryozoan, foraminiferal, ostracod and echinoid remains are present. The matrix is commonly dolomicritic. Porosity is biomoldic, intercrystalline, intracrystalline, vuggy and represented by fractures. Occasionally, the cavities and fractures are partially or completely filled with anhydrite, celestite and dolomite.

The results obtained reveal that the "Nullipore" carbonates represent reefal buildups in which the boundstone and packstone-boundstone facies constitute the reef core accumulated under high-energy conditions. The majority of the wackestones make up the reef flat and/or reef back. The mudstones and some wackestones reflect deposition under subtidal, partly protected, less-energetic conditions. Assessing the depositional history of the carbonates along a NW-SE profile reveals that the "Basal Beds" were accumulated on an irregular pre-Miocene relief. The thickness variations of the overlying Zones IX, VIII and VII indicate that the southeastern part of the field was deeper (trough with continuous subsidence) than the northwestern sector. However, deposition of Zone VI was accompanied by sea regression which resulted in the absence of Zone V in some sites. Zones III and II were accumulated during continuous subsidence and carbonate building. Due to the beginning of a regressive cycle, the reef core sediments represented by Zone III were restricted to the central part of the field. The mudstone facies of Zone I reflects deposition under relatively calm conditions probably in a protected environment with intermittent terrigenous influx. The distribution of the various types of coralline algae and the vertical facies variations indicate that the "Nullipore" succession can be subdivided into lower, middle and upper regressive sequences. Their tops coincide with the tops of Zones VIII, IV and I, respectively. Generally, these sequences represent environmental variations from inner- to mid-ramp.

The diagenetic history of the studied carbonates comprises both pre-uplift and post-uplift changes which are either porosity-constructive or porosity-destructive. Lithification took place both syndepositionally and after accumulation. Compaction followed primary lithification and was occasionally accompanied by pressure-solution effects. Micritization and calcitization of the originally aragonitic shells affected most of the bioclasts. Filling of cavities with anhydrite, celestite and dolomite took place during several phases of diagenesis. Dolomitization affected the whole sequence although with a variable intensity. It was accomplished by Mg-rich porewaters in the mixed meteoric/marine phreatic zone. Dissolution resulted in the frequent development of biomolds, vugs and cavities and the occasional formation of rottenstones. Fracturing is more common in dolostones. It followed mainly the dissolution and cavity-filling processes.

Evaluating the reservoir quality of the Ras Fanar carbonates reveals that highest porosity values are related to dissolution and leaching of skeletal grains (telogenetic porosity). Dissolution resulted also in the formation of vugs which are typically interconnected (eogenetic porosity). Intercrystalline pores are mainly an artifact of dolomitization (eogenetic porosity) and are commonly open and interconnected. Intracrystalline pores, on the other hand, are isolated. Fracture porosity (mesogenetic porosity) often grades into breccia porosity. The ranges of the measured porosity and permeability values for the delineated electrolithofacies zones are 7-39 % and 0.1-1000 mD.

CONTENTS

		Page
	CHAPTER I	
INI	TRODUCTION	1
1.1	Exploration History	1
1.2	Aim of Study	3
1.3	Materials and Reliability	4
	CHAPTER II	
GE(OLOGIC SETTING	7
2.1	Regional Stratigraphy of the Gulf of Suez	7
2.2	Stratigraphy of the Ras Fanar Field	13
2.3	Regional Structural Setting of the Gulf of Suez	20
2.4	Structural Setting of the Ras Fanar Field	25
	CHAPTER III	
LO	G CORRELATION AND ELECTRO-LITHOFACIES	
ZO	NATION	31
3.1	Introduction	31
3.2	Results and Discussion	32
	CHAPTER IV	
co	RE DESCRIPTION AND LITHOFACIES ANALYSIS	45
4.1	Introduction	45
4.2	Results and Discussion	45
	4.2.1 Lithofacies types	45
	4.2.2 Facies distribution and zonation	48

		Page
	CHAPTER V	
PET	ГROGRAPHY	67
5.1	Introduction	67
5.2	Results and Discussion	67
	CHAPTER VI	
DEI	POSITIONAL ENVIRONMENT AND SIGNIFICANCE OF	
COI	RALLINE ALGAE	86
6.1	Depositional Environment	86
6.2	Coralline Algae and Their Environmental Significance	89
	CHAPTER VII	
DIA	GENESIS	99
	CHAPTER VIII	
RES	SERVOIR CHARACTERS AND QUALITY	104
	Classification of Porosity	104
8.2	Distribution of Different Pore Types Throughout	
	the "Nullipore" Sequence	106
8.3	Evaluation of Reservoir Quality by Using the	
	Conventional Core Analyses	108
	CHAPTER IX	
SUM	IMARY AND CONCLUSIONS	114
REF	ERENCES	123
ARA	ABIC SUMMARY	

LIST OF FIGURES

		Page
Fig.1.1	Map showing the location of the main oil fields in the Gulf of Suez province including the studied Ras Fanar Field	2
Fig.1.2	Key map of the Ras Fanar wells	6
Fig.2.1	Generalized stratigraphic scheme of the Gulf of Suez province (after Darwish and El Arabi, 1993).	8
Fig.2.2	Generalized stratigraphic column and tectonic environments of deposition of the Ras Fanar sequence (after El-Naggar, 1988)	12
Fig.2.3	Stratigraphic nomenclatures proposed by various workers of the Miocene in the western side of the Gulf of Suez and the Ras Fanar Field.	19
Fig.2.4	Regional structural setting of the Gulf of Suez (A. Moustafa, 1976; B. Meshref et al., 1988)	23
Fig.2.5	Synthetic framework of the main Neogene tectonic events (after Montenat et al., 1986)	24
Fig.2.6	Schematic paleo-tectonic section of Ras Fanar, Shoab Gharib and Ras Gharib (after El-Naggar, 1988)	26
Fig.2.7	Schematic paleo-tectonic section of Ras Fanar, Shoab Gharib and Ras Gharib (after El-Naggar, 1988)	29
Fig.2.8	Diagrammatic facies section across the "Nullipore" carbonates of Ras Gharib-Ras Fanar (after Chowdary and Taha, 1986)	30

		Page
Fig.3.1	Electro-lithofacies log of the "Nullipore" succession in the Ras Fanar Field, KK 84-8 (B1) as a type well	33
Fig.3.2	Isochore map of electro-lithofacies of Zone I	34
Fig.3.3	Isochore map of electro-lithofacies of Zone II	35
Fig.3.4	Isochore map of electro-lithofacies of Zone III	37
Fig.3.5	Isochore map of electro-lithofacies of Zone IV	38
Fig.3.6	Isochore map of electro-lithofacies of Zone V	39
Fig.3.7	Isochore map of electro-lithofacies of Zone VI	41
Fig.3.8	Isochore map of electro-lithofacies of Zone VII	42
Fig.3.9	Isochore map of electro-lithofacies of Zone VIII	43
Fig.3.10	Isochore map of electro-lithofacies of Zones IX and Basal Beds	45
Fig.4.1	Distribution chart for the cored intervals in the Ras Fanar wells and the corresponding carbonate zones	46
Fig.4.2	Lithofacies analysis of the cored wells plotted on isochore map of Zone I in the Ras Fanar Field	52
Fig.4.3	Lithofacies analysis of the cored wells plotted on isochore map of Zone II in the Ras Fanar Field	53
Fig.4.4	Lithofacies analysis of the cored wells plotted on isochore map of Zone III in the Ras Fanar Field	57
Fig.4.5	Lithofacies analysis of the cored wells plotted on isochore map of Zone IV in the Ras Fanar Field	58

		Page
Fig.4.6	Lithofacies analysis of the cored wells plotted on isochore map of Zone V in the Ras Fanar Field	60
Fig.4.7	Lithofacies analysis of the cored wells plotted on isochore map of Zone VI in the Ras Fanar Field	64
Fig.4.8	Lithofacies analysis of the cored wells plotted on isochore map of Zone VII in the Ras Fanar Field	65
Fig.4.9	Lithofacies analysis of the cored wells plotted on isochore map of Zone VIII in the Ras Fanar Field	66
Fig.6.1	Schematic depositional history of the different carbonate zones in the Ras Fanar Field (D-D' Profile)	87
Fig.6.2	Typical growth forms and internal structures of (A) crustose coralline algae (subfamily <i>Melobesioideae</i>), (B) articulated coralline red algae (subfamily <i>Corallinoideae</i>) (after Adey and Macintyre, 1973)	91
Fig.6.3	Abundance of crustose coralline algae with paleodepth in Majorica reefs, Spain (after Bosence, 1989)	93
Fig.6.4	Northwest-southeast schematic cross section of the northern part of the Ras Fanar Field	97
Fig.7.1	Alternate models of near-surface dolomitization and porosity development of QQ89 Field. (Model after Kissling, 1983)	102
Fig.8.1	Geological classification of pores and pore systems in the carbonate rocks (after Choquette and Pray, 1970)	105
Fig.8.2	Relationship between the stages of diagenesis and creation or elimination of pores in carbonate rocks (after Friedman et al., 1982)	105