STUDY OF THE OIL POTENTIALITIES OF DARAG BASIN, GULF OF SUEZ, EGYPT, BASED ON SUBSURFACE GEOLOGIC STUDIES

1 212 /

ВУ

OSAMA AMIN EL-SHAARAWY

B.Sc. (GEOLOGY)

DIPLOMA (PETROLEUM GEOLOGY)

THESIS
SUBMITTED FOR PARTIAL FULFILMENT
OF THE RIQUIRMENTS OF THE DEGREE

OF
MASTER OF SCIENCE
IN
GEOLOGY
"APPLIED GEOPHYSICS"

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY 1987

Warn.

المنافد سيما أفرا

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Dr. Nasser M. Hassan, Professor of Geophysics, Geology Department, Faculty of Science, Ain Shams University, for his supervision, guidance, and critical reading and review of the manuscript.

I am deeply indebted to Dr. Adel R. Moustafa, Lecturer of Structural Geology, Geology Department, Faculty of Science, Ain Shams University, for his sincere help, suggesting the point of study, his guidance during all stages of this work, and final review of the manuscript.

Special thanks are due to Mr. Shawky Abdine, General Exploration Manager, Gulf of Suez Petroleum Company (Gupco) for his approval on getting the required data upon which the thesis is based.

Many thanks are **also** extended to the Egyptian General Petroleum corporation and Amoco Egypt for approval to use the subsurface data for the thesis.

Last but not least, I would like to convey my appreciation to every one who helped directly or indirectly in the achievement of this work.

NOTE

This thesis is submitted to the Faculty of Science, Ain Shams University, for the partial fulfillment of the requirements of the degree of Master of Science in Geology. Besides the research work materialized in this thesis, the candidate has attended ten post-graduate courses in the following topics:-

- 1- Mapping.
- 2- Laboratory Techniques,
- 3- Structural Geology.
- 4- Geotectonics.
- 5- Petrophysics.
- 6- Reservoir Evaluation.
- 7- Elastic Wave Theory.
- 8- Seismic Prospecting.
- 9- Gravity Prospecting.
- 10- Magnetic Prospecting.

He successfully passed the final examination in these courses held in February, 1984. He also passed an examination in the English Language.

Professor Soliman M. Soliman

Chairman, Department of Geology.

CONTENTS	
LIST OF FIGURES	Page
LIST OF TABLES	
LIST OF PLATES	
LIST OF ABBREVIATIONS	
ABSTRACT	
CHAPTER I. INTRODUCTION	1
1- Location2- Objectives3- Types of the Used Data4- Previous Work	
II. GEOLOGY OF THE GULF OF SUEZ REGION	8
 1- Geologic Setting 2- Stratigraphy of the Gulf of Suez Region	
4- Geologic History of the Gulf of Suez Region	n
III. STRATIGRAPHY OF THE STUDY AREA	38
1- Stratigraphic Setting A- The Northernmost Province B- The Central Province C- The Westernmost Province D- The Southern Province 2- Summary	
IV. SEISMIC STRUCTURAL ANALYSIS	60
 1- Introduction 2- Structural Characteristics A- The Darag Basin B- The October Basin 3- Effects of the Structures on the Thickness and Facies of the Miocene and Post-Miocene Rocks. A- The Lower Miocene Rocks 	
R- The Post-Kareen Rocks	

Chapter Page
 4- Oligo-Miocene Igneous Rocks 5- Structural Analysis A- Fault Sets B- Surface and Subsurface Structures 6- Structural Model 7- Summary and Conclusions
V. SUBSURFACE EVALUATION
1- Introduction 2- Isopach Maps A- Upper Cretaceous Rocks B- Eocene Rocks C- Nukhul Formation D- Rudeis Formation E- Kareem Formation F- Post-Miocene Rocks G- Summary 3- Facies Maps A- Shale Percentage Maps B- Clastic/Non Clastic Ratio Maps C- Sand/Shale Ratio Maps 4- The Depositional Environments of the Study Area A- Upper Cretaceous Rocks B- Eocene Rocks C- Nukhul Formation D- Rudeis Formation E- Kareem Formation
VI. PETROPHYSICAL CHARACTERISTICS 143
1- Introduction 2- Determination of the Petrophysical Parameters A- Shale Content (Vsh) B- Rock Porosity (Ø%) C- Fluid Resistivities
D- Rock Resistivities E- Water Saturation (Sw) 3- Petrophysical Isoparametric Maps A- Shale Content (Vsh) Maps B- Isoporosity (Ø%) Maps C- Water Resistivity (Rw)

- iii -

Chapte	r	age
VII.	OIL POTENTIALITIES OF THE STUDY AREA	165
	 1- Introduction 2- Stratigraphic Sequence A- Source Rocks B- Reservoir Rocks C- Cap Rocks 3- Structural Configuration 	
VIII.	SUMMARY AND CONCLUSIONS	172
REFERE	NCES	186
VITA		
ARABIC	SUMMARY	

LIST OF FIGURES

		<u>Page</u>
Fig.1:	Location map of the study area	. 2
Fig.2:	Location map of the used wells	
Fig.3:	Location map of the used seismic lines	
Fig.4:	Structural map of the Suez rift	
Fig.5:	Generalized stratigraphic section of the	
C	Gulf of Suez Region	. 10
Fig.6:	Generalized stratigraphic section of the	
	Miocene rocks in the Gulf of Suez Region · · · ·	. 18
Fig.7:	Dip Province and hinge Iones of the Gulf	
	of Suez	. 25
Fig.8:	Possible shear zones in the Gulf of Suez	
	area according to gravity interpretation	. 26
Fig.9:	Basement structures of the Gulf of Suez	
	Region interpreted from magnetic maps	27
Fig.10:	Structures of the north eastern desert	. 29
Fig.11:	Geologic history of the Darag Basin	. 30
Fig.12:	Early Eocene paleogeographic map	. 31
Fig.13:	Gravity map of the northern part of the	
	Suez rift	. 32
Fig.14:	Regional tectonic map of the northern part	
	of the Suez rift	. 32
Fig. 15.	Mincene nalengengraphy of the Suez rift	. 37

	<u> </u>	age
Fig.16:	Simplified stratigraphic sections of the	
	wells in the study area	39
Fig.17:	Location map of the suggested stratigraphic	
	provinces in the study area	40
Fig.18:	Line drawing of the seismic profile number 1.	63
Fig.19:	Line drawing of the seismic profile number 2.	64
Fig.20	Line drawing of the seismic profile number 3.	65
Fig.21:	Line drawing of the seismic profile number 7.	66
Fig.22:	Line drawing of the seismic profile number 8.	67
Fig.23:	Line drawing of the seismic profile number 9.	68
Fig.24:	Line drawing of the seismic profile number 11	69
Fig.25:	Line drawing of the seismic profile number 13	70
Fig.26:	Line drawing of the seismic profile number 14	70
Fig.27:	Line drawing of the seismic profile number 16	7.2
Fig.28:	Line drawing of the seismic profile number 19	7.3
Fig.29:	Line drawing of the seismic profile number 21	7.4
Fig.30:	Dip angles and directions measured in some of	
	the boreholes of the study area	7.7
Fig.31:	Miocene and post-Miocene stratigraphic summar	У
	of the drilled wells	87
Fig.32:	Oligo-Miocene dolerite sills drilled in the	
	study area and basalt-dolerite surface	
	acquirmencae	0.3

		Page
Fig.33:	Three-dimensional representation of the	
	structures of the top Eocene rocks	91
Fig.34:	Three-dimensional representation of the	
	structures of the top Kareem Formation	92
Fig.35:	Major surface and subsurface structures	
	affecting the top Eocene rocks	95
Fig.36:	Isopach map of the Upper Cretaceous rocks	107
Fig.37:	Isopach map of the Eocene rocks	1 0 9
Fig.38:	Isopach map of the Nukhul Formation	111
Fig.39:	Isopach map of the Rudeis Formation	113
Fig.40:	Isopach map of the Kareem Formation	114
Fig.41:	Isopach map of the post-Miocene rocks	116
Fig.42:	Shale percentage map of the Upper Cretaceou	s
	rocks	122
Fig.43:	Shale percentage map of the Nukhul Formation	n 1 2 3
Fig.44:	Shale percentage map of the Rudeis Formation	n124
Fig.45:	Shale percentage map of the Kareem Formation	n 125
Fig.46:	Clastic/Non Clastic ratio map of the Upper	
	Cretaceous rocks	129
Fig.47:	Clastic/Non Clastic ratio map of the Rudeis	
	Formation	130
Fig.48:	Clastic/Non Clastic ratio map of the Kareem	
	Formation	131
Fig.49:	Sand/Shale ratio map of the Upper Cretaceou	s
	rocks	135

		Page
Fig.50:	Sand/Shale ratio map of the Rudeis Formation	136
Fig.51:	Sand/Shale ratio map of the Kareem Formation	137
Fig.52:	Shale content (Vsh) map of the Kareem	
	Formation	155
Fig.53:	Shale content (Vsh) map of the Upper	
	Cretaceous rocks	157
Fig.54:	Shale content (Vsh) map of the Nubia	
	Sandstone "A"	158
Fig.55:	Isoporosity map of the Kareem Formation	159
Fig.56:	Isoporosity map of the Upper Cretaceous	
	rocks	161
Fig 57.	Isonorosity man of the Nubia Sandstone "A"	162

- viii -

LIST OF TABLES

	<u>Page</u>
Table 1:	Data of the used wells4
Table 2:	Seismic data obtained from the available
	V.S.P. logs of 9 wells in the study area 61
Table 3:	Thicknesses of the different rock units
	encountered in the different wells of the
	study area 106
Table 4:	Shale percentages of the different rock
	units
Table 5:	Clastic/non clastic raties of the different
	rock units 128
Table 6:	Sand/shale ratios of the different rock
	units 134
Table 7:	Average petrophysical parameters for the
	studied rock units of the study area 153

LIST OF PLATES

Plate 1:	Top Eocene seismic structural map
Plate 2:	Top Kareem Formation Seismic structural
	map
Plate 3:	Miocene clastics isochron map (base
	Nukhul Formation to top Kareem Formation)
Plate 4:	Post-Kareem rocks isochron map (top
	Kareem Formation to sea floor)
Plate 5:	Geoseismic section across the study area

LIST OF ABBREVIATIONS

Symbol_	Meaning
ВНС	Borehole Compensated log
ВНТ	Bottom hole temperature
CL	Caliper log
CNL	Compensated Neutron log
di	Depth of invasion
F	Formation resistivity factor
FT	Formation temperature
GR	Gama Ray log
GR clean	GR log reading in front of clean SS bed
GR sh	GR log reading in front of shale bed
h	Bed thickness
hd	Hole diameter
hmc	Mud cake thickness
J	Pseudogeometrical factor
LDL	Litho-Density log
LLd	Latero-log deep
LLs	Latero-Log shallow
MLL	Microlaterolog
MSFL	Microspherically Focused log
PSP	Pseudo spontaneous potential
Rm	Resistivity of the drilling mud
Rmc	Resistivity of the mud cake
Rmf	Resistivity of the mud filterate
Rt	True rock resistivity
Rxo	Flushed (invaded) cone resistivity

- xi -

Symbol_	Meaning
Rw	Formation water resistivity
SP	Spontaneous Potential log
SSP	Static spontaneous log
ST	Surface temperature
Sw	Water saturation
TD	Total depth
V mat	Velocity of waves in the included matrix
V sh	Volume of shale (shale content)
VSP	Vertical Seismic Profile
P6	Bulk density in grams per cubic centimeter
16 5 h	Density reading of a thick shale bed
Pf	Fluid density (1.1gm/cc for salt water mud)
P6 mat	Matrix bulk density (2.65gm/cc for S.S)
ØC	Total corrected porosity
ØD	Porosity derived from the Density log
ØN	Porosity derived from the Neutron log
Ø N sh	Porosity reading in fromt of shale bed
ØS	Porosity derived from the sonic log
ØT	Total porosity
ΔŢ	Sonic transit time (micro second per ft.)
△ T f	Sonic transit time for the mud fluid
	(185 Msc/ft for salt water mud)
△ T sh	Sonic transit time of a thick shale bed.
△T mat	Sonic transit time of the matrix
	(55.5/sc/ft for S.S)