EVALUATION OF THE PITTING FUNCTION OF THE SPLEEN IN SPLENOMEGALY BEFORE AND AFTER SPLENECTOMY

THESIS

Submitted for Partial Fullfilment of
The Master Degree in
(INTERNAL MEDICINE)

BY

AZZA MOHAMED HOSNY TAWFIK

(M.B., B.Ch.)

SUPERVISED BY

Prof. Dr. ADEL SHAKER
Prof of Internal Medicine
Ain Shams University

of. Dr. REFAAT KAMEL
Prof. of Surgery
Ain Shams University

Prof. Dr. OMAR FATHY
Prof. of Internal Medicine
Ain Shams University

AIN SHAMS UNIVERSITY
Faculty of Medicine
(1987)

DEDICATED TO

MY FATHER

MY MOTHER

ě

MY HUSBAND

3

ACKNOWLEDGEMENT

My deep thanks and appreciation to **Prof. Dr. ADEL SHAKER**, Head of Department of Internal Medicine, Ain Shams University for his valuable supervision, guidance and encouragement throughout the accomplishment of this study. He was always guiding me in the exact direction. I am extremely grateful to him for his helpful advices.

I wish to express my warm thanks to **Prof. Dr. REFAAT KAMEL**, Professor of Surgery, Ain Shams University, for his encouragement and meticulous supervision. He was always kind enough to give me the push in performing this work.

I would like to express my deep gratitude and my warm thanks to **Prof. OMAR FATHY.** Professor of Internal Medicine, Ain Shams University for his support, continous help, guidance and valuable supervision.

It would not be possible to end this acknowledgement without thanking all the staff of the virology, immunology and hematology departments in U.S. Naval medical research unit No. 3, Cairo for thier assistance and understanding. They gave me hand to finish such thesis in this manner, I thank them all and especially **Dr. KAREM KAMEL, Dr. BOLIS BOTROS** and **Dr. IBRAHIM OMAR** for their valuable support, and also all the staff in the photography department for their guidance and help.

CONTENTS

		Page
I.	INTRODUCTION	1
П.	AIM OF THE WORK	2
ш.	REVIEW OF LITERATURE	3
	- Structure of the Spleen	3
	- Normal Functions of the Spleen	9
	- Hyposplenism	28
	- Diseases Associated with Enlargement of the Spleen	46
	- Wyelofibrosis as a Cause of Splenomegaly	49
	- Segmental Splenectomy	50
	- Postsplenectomy Sepsis	51
IV.	SUBJECTS AND METHODS	53
v.	STAINING MODIFICATION	56
VI.	RESULTS	59
V II.	. DISCUSSION	91
VIII	LSUMMARY AND CONCLUSION	97
IX.	REFERENCES	100
Y	ARARIC SIIMMARY	

Introduction

6/

INTRODUCTION

The spleen is a line filter in the portal circulation. it removes particulate material of several kinds from the blood and gives to the blood some cells and proteins. It is an extremely vascular organ with several specialized vascular structures essential to its function.

The average normal surgically removed spleen with all blood drained out weighs about 80 g; blood flow through the normal spleen is about 300 ml per minute (Koyama, 1967). Thus the spleen makes up about 0.1 percent of the total body weight (80/70,000) but receives about 5 % of the cardiac out put (300/5,000). In 2,000 persons who suffered violent deaths the average post mortem splenic weight was about 135 gm (Krumbhar, 1939). The weight of apparently normal spleen, was as low as 100 g and as high as 250= g. The adult human spleen contains about 140 billion cells; some what less than half of which are capable of phagocytosis. Increased requirement for phagocytosis, as in hereditary spherocytosis, results in enlargement of the spleen, with the cell content increasing about eight fold (Jand1, 1965).

AIM OF WORK

AIM OF THE WORK

The spleen has many functions, one of them is the pitting function, which is the ability of the spleen to remove various intra erythrocytic inclusions from the red cells without destroying the cell itself.

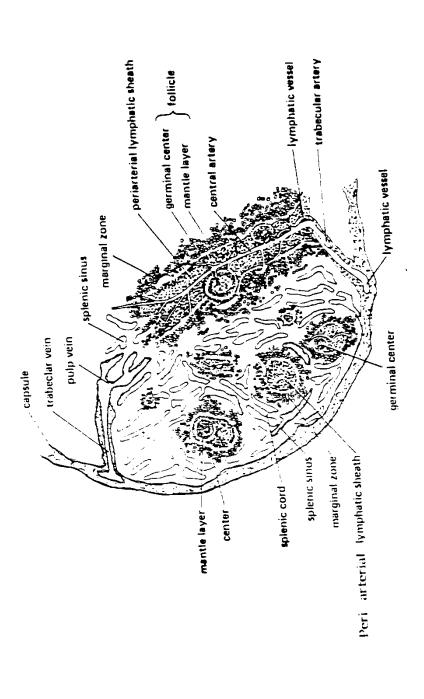
Several methods are used to detect this function especially its return after splenectomy (splenosis), but most of them are complicated or invasive as laparoscopy laparotomy or injection of 99 m technetium and scan the abdomen for uptake of this radionuclide by the splenic modules.

To evaluate the pitting function we used a new, non invasive and semiquantitative technique for the presence of "Pocks", "Pits"or vacuoles on their surface using the interference phase contrast microscope. Persons with normal splenic function usually have less than 1% vacuolated red blood cells in their circulation. Whereas asplenic persons have 10 to 60% vacuolated cells and those with reduced splenic function (hypsplenia) have from 4 to 12%. When there is return of splenic function by the regenerated splenic tissue there is low percentge of vacuolated red blood cells.

Review of Literature

STRUCTURE OF THE SPLEEN

The vasculature :


The capsule of the human spleen contains some muscle fibres, so it can contract at the time of bleeding. fibrous capsule of the spleen project trabeculae into the parenchyma, providing a scaffolding along which the arteries and veins penetrate from the hilus. Smaller arteries emerge from the trabeculae surrounded by a lymphatic sheath. Branches from these "central arteries" take of at almost right angles, consistent with a plasma skimming funciton. It is characteristic of the splenic circulation that the arteries emerging from the sheath not terminate in capillaries connecting to veins. Anatomically, they are open-ended, indicating that blood is dumped into the splenic cords. The venous system collects the blood from these cords through splenic sinusoids into larger veins and thence to the hilus via the trabecular scaffold. "Skimmed" plasma returns to circulation via lymphatics which also exist along the trabeculae. There has been controversy over whether the circulation through the red pulp is "open or closed". Does blood move from the arteries through closed channels into the sinuses or does it empty from the ends of arteries into the open mesh work of the cords and come into vanous system through interstices of the walls of the sinuses? studies in vivo indicate the former. Swift currents of blood stream rapidly cross the cords, while a small amount moves sluggishly through the red pulp. (Williams, 1950 & McCuskey, 1972). Histologic studies however, have demonstrated few direct connections from the arterial to the venous system. (Weiss, 1972).

The cells that move slowly through the cords may take minutes to traverse these few millimeters, yet it is known that blood flows through the normal human spleen at a rate of 300 ml per min. At this rate not every cell could go through the cordal filter every time. There must be rapid shunts across the spleen.

The parenchyma:

The spleen is divided into 3 parts: the white pulp, the red pulp, and between red and white, the marginal zone. Each part has three components: vessels, reticular cells, and free cels within a reticular mesh work (Fig.).

The white pulp (Weiss, 1964) is seen grossly as points on the cut surfaces of the spleen and in histologic sections as small discs surrounded by the vaster martix of the pulp.

The structure of the spleen, white pulp is composed of periarterial splenic cords and sinuses. Quoated from William's text book of hemalymphatic sheath and the germinal centers. Red pulp is the area of

In three dimensions the white pulp is a cylindrical periarterial lymphatic sheath surrounding the central artery. Eccentric within the sheath are germinal centers encased by a shell of small lymphosytes, the mantle layer. The vessels are branches of the central artery which take off at right angles. Some terminate within the white pulp, some in the marginal zone, and others, often the larger ones, in the red pulp. Plasma skimming probably minimizes the number of red cells released into the white pulp , while larger terminal arterioles carry a concentrated mix of red cells into the red pulp. The reticular mesh work of the white pulp forms the structural fabric. At the periphery of the sheath it forms a fine radial net, but the interior is an intricate, almost random, interlacing. The fibers of the periarterial sheath have a particular affinity for the T lymphocytes that comprise the lymphocytic component of the sheath, entrapping and retaining them as they arrive via the circulating blood (Weiss, 1964). The reticular structure also supports the germinal centers with a shell of fibrils.

Free cells in the white pulp are predominantly small lymphocytes. There are few granulocytes and plasma cells even fewer red cells. Macrophages are present

in all parts of the spleen. In the germinal centers large and medium size lymphocytes are present, together with many macrophages. The mantle of the germinal center consists almost entirely of small lymphocytes.

The marginal zone (Weiss, 1963) is peripheral to the radial layers of reticulum that bound the periarterial sheath. Vessels are end artericles arising from the central artery. The reticulum of the marginal zone isdense. The net work receives many if not most of the terminal artericles. The free cells are blood cells emerging from the arterial endings, a fair number of macrophages, and many medium size lymphocytes. The cells are not so tightly packed as in the white pulp. Although the marginal zone is clearly demarcated from the periarterial sheath, its outer margin blends imperceptibly with the red pulp, so that some sinusoids of the red pulp come quite close to the periphery of the sheath.

The red pulp (Chen, 1972) are primarily arteries derived from the central artery and the venous sinuses. The arteries arise from the central artery, branching to penetrate the lymphatic sheath or extending beyond the termination of that periarterial cylinder. Some of these branches end in the marginal zone, others cross