TheEffect of Statinson Matrix Metalloproteinase 9in ChronicObstructive Pulmonary Disease

Thesis

Submitted for Partial Fulfillment of Master Degree Of Chest Diseases and Tuberculosis

BY

Dina Saad Eldin Awadeen

MBBCH-Mansoura University

Supervised by

Prof. Samiha Ashmawi

Professor of Chest Diseases Faculty of Medicine, AinShamsUniversity

Prof. Gehan El Assal

Professor of Chest Diseases Faculty of Medicine, AinShamsUniversity

DR.Mohamed Said Mostafa

Assisstant Consultant of Biochemistry Poisons Control Center, Ain Shams University Hospitals

Faculty of Medicine AinShamsUniversity

Acknowledgement

First of all, I thank **ALLAH** who gave me the power to finish this work.

I would like to express my deepest gratitude and greatest appreciation to **Prof.Samiha Ashmawi,** Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her guidance, supervision and support.

My deepest thanks & infinite gratitude to **Prof.Gehan El Assal**, Professorof Chest Diseases, Faculty of Medicine, Ain Shams University, for her guidance, cooporation and patience.

I would like to extend cordial appreciation &infinite gratitude to **Dr.Mohammed Said Mostafa,** Assisstant Consultant of Biochemistry, Poisons Control Center, Ain Shams University Hospitals, who was very kind and patient to me, saving no time or effort in helping me.

List of Contents

	Page
Introduction	1
Aim of the Work	4
Review of Literature:	
Chronic Obstructive Pulmonary Disease (COPD))5
Definitions	6
■ Burden of COPD	7
Risk Factors	13
 Pathogenesis, Pathology and Pathophysiology 	21
Clinical Features of COPD	39
■ Investigations	44
Staging of COPD	52
Management of COPD	61
Statins	85
History	85
Chemistry	86
Members	87
Mechanism of action	90

■ Statins and inflammation91
Absorption, fate and excretion92
Adverse effects
■ Indications and uses95
 Statin effects on pulmonary inflammation in COPD97
Matrix Metalloproteinases (MMPs)101
■ Definitions101
• Characteristics
• Tissue inhibitors of MMPs (TIMPs)104
■ Members of MMPs107
• Metalloproteinase regulation109
• Structural properities of MMPs111
■ Matrix metalloproteinase9 (MMP-9)114
Subjects and Methods 123
Results 130
Discussion
Summary 159
Conclusions

Recommendations	163
References	164
Arabic Summary	•••••

List of Figures

Figure No.	Title	Page No.
(1)	Pathological Changes of the Central Airways in COPD	24
(2)	Pathological Changes of the Peripheral Airways in COPD	25
(3)	Normal spirogram and spirogram typical of patients with moderate COPD	47
(4)	GOLD guidelines advocate symptomatic assessment using the CAT or mMRC	60
(5)	Members of Statins	87,88
(6)	Structure of MMPs	113
(7)	The major sources of MMP-9 in the emphysematous lung	118
(8)	Possible role of MMP-9 in development of tissue remodeling and emphysema	121
Results		
(9)	Comparison between studied groups as regard anthropometric data	131

(10)	Comparison between MMP-9 in cases and controls before and after treatment with Atorvastatin	133
(11)	Comparison between both studied groups as regard PFT parameters before treatment with Atorvastatin	136
(12)	Comparison between both studied groups as regard PFT parameters after treatment with Atorvastatin	137
(13)	Comparison between PFT parameters before versus after treatment with Atorvastatin among cases	138
(14)	Relation between serum MMP-9 and number of cigarette smoked per day	140
(15)	Relation between FEV1 and serum MMP-9 in cases	141
(16)	Relation between FEV1/FVC% and serum level of MMP-9 in cases	142
(17)	Relation between FEF25-75% and serum MMP-9 in cases.	143
(18)	Sensitivity and specificity of MMP-9	146

List of Tables

Table No.	Title	Page No.
(1)	The Egyptian Society of Chest Diseases and Tuberculosis (ESCT) classification of COPD (2003)	54
(2)	Global initiative for Chronic Obstructive Lung Disease, 2013 classification	55
(3)	Modified Medical Research Council Questionnaire For assessing the severity of breathlessness	57
(4)	Initial pharmacologic management of COPD	74
(5)	Classification of MembersofMatrix Metalloproteinases	107
Results		
(6)	Comparison between studied groups as regard general and anthropometric data	130
(7)	Comparison between studied groups as regard MMP-9	132

(8)	Comparison between both studied groups as regard PFT parameters before treatment with Atorvastatin	134
(9)	Correlations between MMP-9 versus different variables among cases	139
(10)	Correlations between MMP-9 versus different variables among controls	144
(11)	Validity of MMP-9 in prediction of COPD	145

List of Abbreviation

ASTEROID A clinical trial published in 2006 that shows the effects

trial of statins on atherosclerosis

BEC Bronchial Epithelial Cells

BODE Body mass index, Airflow obstruction, Dyspnea, and

Exercise capacity

BTS British Thoracic Society

CAL Chronic Airflow Limitation

CAT COPD assessment test

CD4,CD8 Claster of Differentiation (is a glycoprotein expressed

on the surface of T helper cells, regulatory T cells,

monocytes and macrophages).

CHD Coronary Heart Disease

COPD Chronic Obstructive Pulmonary Disease

CRP C-reactive protein

CT Computed tomography

CXP3A4 3A4 isoform of cytochrome P450

Cyclic AMP Cyclic Adenosine monophosphatase

DALY The Disability-Adjusted Life Year

ESCT The Egyptian Society of Chest Diseases and

Tuberculosis

ETS Environmental Tobacco Smoke

FDA Food and Drug Administration

FEF₂₅₋₇₅ Forced expiratory flow 25% to 75%.

FEV₁ Forced expiratory volume in first second.

FVC Forced vital capacity

GM-CSF Granulocyte-macrophage Colony Stimulating Factor

GTPase Enzyme bind and hydrolyze guanosine triphosphate

GOLD Global Initiative for Chronic Obstructive Lung

Disease

H. influenza Hemophilus influenza

HMG-CoA reductase

3-hydroxy-3-methylglutaryl coenzyme A reductase

HPS Heart Protection Study

ICU Intensive Care Unit

IL-1,6,8 Interleukin-1,6,8

IPF Interstitial pulmonary fibrosis

KCO transfer coefficient

KPa Kilopascal (a unit of pressure measurement)

LDL low density lipoprotein

LTB4 leukotriene B4

LVRS Lung Volume Reduction Surgery

M2 receptor Muscarinic receptor

MENA Middle East and North Africa region

M. catarrhalis Moraxella catarrhalis

mEPHX1 Microsomal epoxide hydrolase1

MMPs Matrix Metalloproteinase

MT-MMPs Membrane type Matrix Metalloproteinase

mMRC Modified British Medical Reasearch Council

NHANES III The third National Health And Nutrition Examination

Survey

NIPPV Noninvasive intermittent positive pressure ventilation

PaO₂ Partial pressure of oxygen

PaCO₂ Partial pressure of carbon dioxide

PGs Proteoglycans

PH Pulmonary Hypertension

Pemax Maximum expiratory pressure

PFT Pulmonary Function Tests

Pimax Maximum inspiratory pressure

ROC curve Receiver Operating Charecteristic Curve

S.pneumoniae streptococcus pneumoniae

SaO₂ Oxygen saturation

SREBPs Sterol Regulatory Element Binding Proteins

TIMPs Tissue Inhibitor metalloproteinases

TLCO Carbon monoxide Transfer Factor

TGF-1 Transforming Growth Factor beta 1

TNF-α Tumor Necrosis Factor alpha

ng nanogram

μ**g** Microgram

V_A/**Q** Ventilation/ Perfusion ratio

VN vitronectin

WHO World Health Organization

YLD Years of Living with Disability

Introduction

Chronic obstructive pulmonary disease is a common preventable and treatable disease charecterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases(GOLD, 2014).

Chronic obstructive pulmonary disease (COPD) occurs as a result of the combined effects of smoking exposure and genetic susceptibility to the damaging effects of smoking.COPD is described as heterogenous syndrome of overlapping conditions such as chronic bronchitis, emphysema and bronchiolitis (Vestibo et al.,2013).

COPD is characterized by progressive, minimally reversible air flow limitation that results from varying combinations of parenchymal destruction (emphysema) and fixed small airways disease from smooth muscle hypertrophy and airway fibrosis (*Spurzemand Rennard. 2005*).

COPD is also a systemic disease with progressive muscle wasting of the skeletal and respiratory system, which further limits exercise capacity (**Gan etal., 2004**). Other systemic manifestations of COPD include coronary artery disease (CAD), osteoporosis and anaemia (*Barnes and Celli. 2009*). Smoking has been shown to account for 85% of cases