Role of Cystatin C in early detection of renal impairment in Pre-diabetics

Thesis

Submitted for partial fulfillment of Master degree in Internal medicine

By

Nahla Nader Adly M.B. B. Ch

Under Supervision of

Prof. Dr. / Salah EL Din Ahmed Abu Shelbaya

Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr. / Rania Sayed Abd El- Baky

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr. / Maram Mohamed Maher Mahdy

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Lastly, I shall never forget to thank my mother and my father for their great support not only through this work but also through my whole life and to thank my colleagues for their support.

Nahla Nader Adli Zaki

Acknowledgement

First of all, thanks to Allah the most merciful for giving me the strength to complete this work.

I wish to express my deepest thanks and respect for Prof. Dr. Salah EL Din Ahmed Abu Shelbaya Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for his valuable supervision, guidance and kind advice throughout this work.

Also I wish to express my deep gratitude to Asses. Prof. Dr. Rania Sayed Abd EL-Baky, Asses. Prof of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University for her good support, continuous supervision and unlimited help during this work.

I also like to express my deepest gratitude to Dr. Maram Mohamed Maher Mahdy, Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine, AinShams University for her continuous supervision, quidance, support and encouragement.

And Dr. Magdy Abbas Abd El-Aziz, Consultant of Biochemistry, Faculty of Medicine, AinShams University Hospital

List of Contents

Title P	age
List of tables	i
List of figures	ii
list of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
o Prediabetes	4
o Cystatin C	50
o Diabetic Nephropathy	69
Patients and Methods	.106
Results	.119
Discussion	.134
Summary	.142
Conclusion	.146
Recommendations	.147
References	.148
Arabic summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Categories of increased risk for diabetes		8
Table (2):	World estimates of IGT (adjusted to the w	orld	
	population) by the IDF region:		12
Table (3):	Cystatin superfamily:		55
Table (4):	Definitions of Abnormal Albumin Excretion	i :	74
Table (5):	Pathology of Diabetic Nephropathy		87
Table (6) :	Oral hypoglycemic agents		101
Table (7):	Comparison between group I (prediabetics) group II (healthy volunteers) regarding	the	104
Table (8):	different variants using t-test	evel tics) and	124
	volunteers) using Pearson correlation		125
Table (9):	Correlation between serum cystatin C l and gender in group I (prediabetics) and gr II (healthy volunteers)	evel roup	
Table (10):	Correlation between serum cystatin C land other study parameters in the two gro	evel oups	
Table (11):	using Pearson correlation	tudy rson	
Table (12):	Correlation	wing	128
	correlations between cystatin C and diffe parameters in both groups		129
Table (13):	Multiple logestic regression analysis show correlations between eGFR and diffe		
	parameters in both groups		130

List of Figures

Fig. No	Title	Page
Figure (1):	Global projections for impaired glucose tolerance (IGT) for 2007 and 2025 (in millions of individuals) and projected	
Figure (2):	per cent increase from 2007 to 2025 Fasting and 2-hour postload glucose, Homeostasis model assessment	6
T: (a):	insulin sensitivity (HOMA2-%S) and HOMA β-cell function (HOMA2-%B)	22
Figure (3):	Metabolic Pathways Underlying Pre- Diabetes and Metabolic Syndrome	90
Figure (4):	Relative risk of CVD in normoglycemia, prediabetes and type	20
	= -	38
Figure (5):	Features of insulin signal transduction pathways in skeletal	
	muscle and vascular tissue	
Figure (6): Figure (7):	Structure of human cystatin C (HCC) The molecular mechanism involved in induction and progression of diabetic	56
	nephropathy	77
Figure (8):	Schematic diagram of the interrelationship of the glomerulus, the podocyte, the pedicels, and the	
E: (0):	basal laminae	
Figure (9): Figure (10):	Mediators of podocyte injury in DKD Light microscopy photographs of glomeruli in sequential kidney biopsies performed at baseline and after 5 and 10 years of follow-up in a patient with longstanding normoalbuminuric type 1 diabetes with progressive mesangial expansion	83
	and kidney function deterioration	89

List of Figures (Cont...)

Fig. No	Title	Page
Figure (11):	Electron microscopy photographs of mesangial area in a normal control subject and in a patient with type 1	
	diabetes	90
Figure (12):	Light microscopy photographs of glomeruli from type 1 (A) and type 2 (B through D) diabetic patients	09
Figure (13):	Typical Standard Curve for Human	94
rigure (15).	Cystatin C ELISA.	117
Figure (14):	Comparison between the studied groups regarding serum cystatin C	111
		131
Figure (15):	Correlation between serum cystatin C	191
Figure (16):	level and fasting blood glucose Correlation between serum cystatin C level and glycated haemoglobin	
Figure (17):	(HbA1c) Correlation between serum cystatin C	132
	level and 1hr postprandial blood glucose	132
Figure (18):	Correlation between serum cystatin C level and 2hr postprandial blood	
	glucose	133
Figure (19):	Correlation between serum cystatin C	
- '	level and eGFR	133

List of Abbreviation

Abb.	Full term
1-hrPP:	1 hour postprandial
2-hrPP:	2 hours postprandial
AACE:	American association of clinical endocrinologists
ACE:	Angiotensin converting enzyme
ACR:	Albumin/creatinine ratio
ADA:	American Diabetes Association
AER:	Albumin excretion rate
ARBs:	Angiotensin II receptor blockers
BM:	Basement membrane
BMI:	Body mass index
BP:	Blood pressure
CABG:	Coronary aretery bypass grafting
CAD:	Coronary artery disease
CHD:	Coronary heart disease
CKD:	Chronic kidney disease
CSF:	Cerebrospinal fluid
CST3:	Cystatin C
CST9:	Cystatin 9
CVD:	Cardiovascular disease
Cys-C:	Cystatin C
DCCT:	Diabetes Control and Complications Trial
DECODE:	Diabetes Epidemiology: Collaborative analysis of
	Diagnostic criteria in Europe
DKD:	Diabetic kidney disease
DN:	Diabetic nephropathy
DPP:	Diabetes Prevention Program
DPP4 inhibitors:	Dipeptidyl peptidase 4 inhibitor
DRIs:	Direct renin inhibitors
eGFR:	Estimated glomerular filtration rate
EGP:	Endogenous glucose production
eNOS:	endothelial nitric oxide synthase
ESRD:	End Stage Renal Disease

List of Abbreviation (Cont...)

Abb.	Full term
FBG:	Fasting blood glucose
FFA:	Free Fatty Acids
GBM:	Glomerular basement membrane
GDM:	Gestational diabetes mellitus
GFR:	Glomerular Filtration Rate
GLP-1:	Glucagon-like peptide-1
GWAS:	Genome-wide association study
HCC:	Human cystatin C
HCCAA:	hereditary cystatin C amyloid angiopathy
HDL:	High Density Lipoprotein
HGO:	Hepatic glucose output
HOMA:	Homeostasis Model Assessment
ICAM-1:	Intercellular adhesion molecule-1
IDF:	International Diabetes Federation
IDNT:	International dietetics and nutrition terminology
IFG:	Impaired fasting glucose
IGT:	Impaired glucose tolerance
IL-6:	Interleukin 6
IR:	Insulin resistance
IRF8:	Interferon regulatory factor 8
JAK-STAT:	Janus kinases-signal transducer and activator of transcription signaling
kDa:	kilodalton
KDIGO:	Kidney Disease:Improving Global Outcomes
KORA:	Cooperative health research in the region of Augsburg
LDL:	Low density lipoproteins
MAP- kinase:	Mitogen-activated protein kinase
MCP-1:	Monocyte chemoattractant protein-1
MDRD:	Modification of Diet in Renal Disease
MMP-2:	Matrix metalloproteinase-2

List of Abbreviation (Cont...)

Abb.	Full term
NADPH:	Nicotinamide adenine dinucleotide phosphate
	oxidase
NDDG:	National Diabetes Data Group
NF-kB:	Nuclear factor Kappa-light-chain-enhancer of
	activated Bcells
NGT:	Normal glucose tolerance
NHANES:	National Health and Nutrition Examination Survey
NO:	Nitric oxide
OGTT:	Oral glucose tolerance test
PAI-1:	Plasminogen activator inhibitor-1
PCI:	Percutaneous coronary intervention
PI 3-kinase:	Phosphatidylinositol 3-kinase
PK C:	Protein kinase
PPAR-γ:	Peroxisome proliferator-activated receptor gamma
PU.1:	The macrophage transcription factor
RAS:	Renin angiotensin system
RENAAL:	Reduction in endpoints with angiotensin antagonist
	losartan
ROS:	Reactive oxygen species
RR:	Relative risk
sCr:	Serum creatinine
SGLT2:	Sodium-glucose co-transporter 2
SHARP:	The Study of Heart and Renal Protection
SNPs:	Single-nucleotide polymorphisms
T2DM:	Type 2 Diabetes Mellitus
TBM:	Tubular basement membrane
TG:	Triglycerides
TGF:	Transforming growth factor
TNF:	Tumor necrosis factor
UAE:	Urinary albumin excretion
UKPDS:	The United Kingdom prospective diabetes study
VCAM 1:	Vascular cell adhesion molecule 1
VEGF:	Vascular endothelial growth factor
VLDL:	Very low density lipoprotein
WHO:	World Health Organization

INTRODUCTION

Pre-diabetes is an asymptomatic condition not associated with functional impairment that mostly presents prior to the individual developing type 2 diabetes (*De vegt et al.*, 2001). It consists of impaired fasting glucose (IFG) (100-125 mg/dl), impaired glucose tolerance (IGT) (140-199 mg/dl), or both (*Genuth et al.*, 2008).

5-10 % of people per year with pre-diabetes will progress to diabetes, with the same proportion converting back to normoglycaemia. Prevalence of pre-diabetes is increasing worldwide and experts have projected that more than 470 million people will have pre-diabetes by 2030. pre-diabetes is associated with the simultaneous presence of insulin resistance and beta cell dysfunction-abnormalities that start before glucose changes are detectable (*Tabák et al.*, 2012).

Risk factors for developing diabetes mellitus include: age; ethnicity; weight; first-degree relative with type 2 diabetes; low birthweight and sedentary lifestyle. Certain comorbidities increase the risk of type 2 diabetes, these include: cardiovascular and cerebrovascular disease; polycystic ovary syndrome; a history of gestational diabetes; and mental health problems (*Savill*, 2012).

Cystatin C, a cyteine protease inhibitors freely filtered by the renal glomeruli, metabolised by the proximal tubule, has been identified as an early marker of renal failure. Cystatin C is produced at a constant rate by nucleated cells and released into the bloodstream with a half-life of about 2 hours. Its concentration is almost totally dependent on the glomerular filtration rate (*Willems et al.*, 2009).

Cystatin C may detect mild-to-moderate decreases in GFR that are not evident with serum creatinine-based measurements. Some studies suggest that CysC–GFR was better than creatinine-based estimates of GFR at GFR levels >60 mL/min/1.73 m2 (CKD stages 1 and 2). In addition, CysC–GFR appeared to be better correlated with microalbuminuria, while MDRD and CG creatinine estimates of GFR tend to reflect only proteinuria (*Yang et al.*, 2007).

AIM OF THE WORK

The aim is to study the role of Cystatin C in early detection of renal affection in the pre-diabetics.

PREDIABETES

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Cutoff glycemic levels defining diabetes are based on the observed association between certain glucose levels and a dramatic increase in the prevalence of microvascular complications considered specific for hyperglycemia (retinopathy and nephropathy) (*Martin and Michael, 2011*).

In 1979, the National Diabetes Data Group (NDDG) first introduced the concept of a metabolic state intermediate between normal glucose homeostasis and diabetes, called glucose intolerance. Individuals with glucose intolerance did not meet the criteria for being diagnosed with diabetes but had glucose levels higher than those considered normal (*Diabetes Prevention Program Research Group*, 2007).

Although Type 2 diabetes is a globally growing public health concern, a much larger segment of the world's population is actually diagnosed with pre diabetes, which is defined as having blood glucose concentrations higher than normal, and not yet meeting the definition of diabetes per se. Based on the World Health Organization (WHO), individuals with pre-diabetes have impaired fasting glucose concentration (IFG) ranging between 110 mg/dl and 126 mg/dl, and/or impaired glucose tolerance (IGT), defined as plasma glucose

concentration 2 h post 75 g oral glucose load, ranging between 140 mg/dl and 199 mg/dl (*World Health Organization*, 2006).

The American Diabetes Association (ADA), uses the same WHO definition for the post-load threshold values for impaired glucose tolerance however a lower cutoff value for impaired fasting glucose is used and it ranges between 100 and 125 mg/dl. Furthermore, the ADA stated that glycated hemoglobin (HbA1c) between 5.7 and 6.4% can also be used for diagnosing pre diabetes. It is important to note that the ADA and the WHO recognize that HbA1c level ≥6.5% is indicative of diabetes (American Diabetes Association, 2013).

Progression from prediabetes to diabetes:

"Prediabetes" is the term used for individuals with IFG and/or IGT, indicating the relatively high risk for the future development of diabetes. IFG and IGT should not be viewed as clinical entities in their own right but rather risk factors for diabetes and cardiovascular disease (CVD). IFG and IGT are associated with obesity (especially abdominal or visceral obesity), dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension (*American Diabetes Association*, 2014).

As per the International Diabetes Federation, 382 million people worldwide, or 8.3% of adults, were found to have diabetes in the year 2013 and by the year 2035 this will rise to