CAMPYLOBACTER ENTERITIS IN CHILDREN

THESIS

Submitted for Partial Fulfilment of MASTER DEGREE In CLINICAL AND CHEMICAL PATHOLOGY

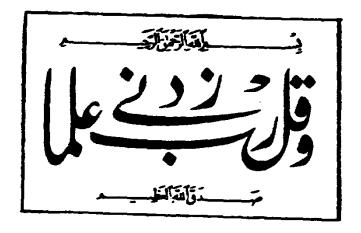
BY

OMNIA ABU EL MAKAREM SHAKER

W.B., B.Ch., Ain Shams University

SUPERVISED BY

Dr. RAGAA MAHMOUD LASHEEN


Professor of Clinical Pathology Faculty of Medicine Ain Shams University

Dr. IBRAHIM KHALIL ALY

Assistant Professor of Clinical Pathology Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1988

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to Prof. Dr. RAGAA MAHMOUD LASHEEN, Professor of Clinical Pathology, Ain Shams University, for her kind supervision, support and encouragement. Here continuous guidance and assistance were invaluable.

I am faithfully grateful to Dr. IBRAHIM KHALIL ALY, Assistant Professor of Clinical Pathology, Ain Shams University, for his unique cooperation, suggestions and encouragement throughout the work.

I wish also to express my deepest thanks to all the members of the Microbiology Unit, Ain Shams University for their great help during this work.

This Work is Dedicated to

My Family

CONTENTS

		PAGE
*	INTRODUCTION AND AIM OF THE WORK	1
*	REVIEW OF LITERATURE	
	I. Taxonomy and Classification	3
	II. Campylobacter Organism	7
	III. Management of Campylobacter	23
	IV. Laboratory Diagnosis	34
•	MATERIAL AND METHODS	48
•	RESULTS	5 9
ŧ	DISCUSSION	70
ŧ	SUMMARY AND CONCLUSION	77
•	REFERENCES	80
•	ARABIC SUMMARY	

INTRODUCTION AND AIM OF WORK

INTRODUCTION

Campylobacter jejuni/coli has become recognized as a major cause of gastroenteritis in human beings (Skirrow, 1977)⁹⁵. Campylobacter enteritis is a disease of world-wide distribution, but there is a striking difference in its pattern between the advanced countries of the West and the developing world. It is more prevalent in the developing countries especially in young children (Billingham, 1981)³.

Campylobacter enteritis is an acute self-limiting disease which is clinically similar to other types of acute infective diarrhea. The illness starts with a prodromal peroid of fever, malaise, headache and backache followed by severe watery diarrhea, abdominal pain, nausea and vomiting (Karmali and Flemina, 1979)⁵⁷.

The isolation of campylobacter from faeces requires special selective techniques because of their microaerophilic nature and many contaminating organisms found in specimens containing them. The optimum conditions for isolation of the organism from faeces include the use of a selective medium, an atmosphere of reduced oxygen concentration and elevated temperature of incubation (Kaplan, 1980)⁵⁶.

In cases of clinical emergency a rapid bacteriological diagnosis can be riade by direct dark-ground or phase-contrast microscopy

of faeces by the characteristic motility and morphology of campylobacter (Karmali and Fleming, 1979)⁵⁷.

Aim of the Work:

The aim of this work is to study the incidence of infection with campylobacter among children suffering from diarrhea.

REVIEW OF LITERATURE

TAXONOMY AND CLASSIFICATION

The first classification of campylobacter as a vibrio species was made on the basis of its morphological similarity to Vibrio cholera. Both organisms are thin, motile, curved, gram negative rods. However, there are major differences in the biochemical and growth characteristics and in the DNA base nucleotide content between true vibrios and the organisms now classified as campyloacters. Campylobacters are microaerophilic or strictly anaerobic and have guanine plus cytosine content between 30 and 36%. They neither ferment nor oxidize carbohydrates (Sebald and Veron, 1963)⁹⁴. True vibrios ferment selected sugars with acid production, grow in 3% sodium chloride, are facultatively anaerobic and have guanine plus cytosine content of 40 to 50%. In light of these distinct differences, Veron and Chatelain (1973) 111 suggested that those organisms known as Vibrio fetus species and other similar vibrios can be reclassified as belonging to a new genus campylobacter. The name is derived from the Greek campylo meaning curved and bacter meaning rod (Rettig, 1979) 87 .

Although the designation of the genus campylobacter is now widely accepted for this group of bacteria, there is still considerable confusion and controversy about the nomenclature and classification of strains within the genus. The currently accepted species classi-

fication of campylobacters from Bergey's Manual of Determinative Bacteriology is listed in Table (1) along with synonyms used in the past (Jones et al., 1931⁵⁴; King, 1957⁶⁰; Florent, 1959³⁶; Veron and Chatelain, 1973¹¹¹). In this schema, there are three species within the genus Campylobacter, with the three subspecies of C. fetus (ss. fetus. ss. intestinalis, ss. jejuni) being the organisms of importance in animal and human disease. Assignment to species and subspecies depends on the growth and the biochemical characteristics as outlined by Smibert (1974¹⁰⁰, 1978¹⁰¹).

Multiple classification schemata which include analysis of somatic and flagellar antigens have been proposed (Smibert, 1978)¹⁰¹ but the complete antigenic characterization of C. fetus has not been accomplished and the current classification of strains based on growth and biochemical strain differences is preferable (Rettig, 1979)⁸⁷.

Campylobacter fetus ss. fetus is the agent of enzootic abortion and infectious infertility in cattle and it was first described by \mathbf{Smith} (1918) 102 . It is not found in human infection.

Campylobacter fetus ss. intestinalis was first described as the agent of bovine abortion (McFaydean and Stockman 1913)⁷⁴. Its transmission is by faecal-oral route rather than by venereal

Table (1): Classification of the genus campylobacter

1		- 5	Taxonomic classification synonyms according to:	ication ng to:	Ecology	Disease states
	Bergey's Manual Smiberl, 1974	Veron and Chatelain, 1973	King, 1957	Florent, 1959 or Jones et al.,1931		
-	I, Campylobacter fetus ss. fetus	C. fetus ss.	Vibrio fetus	V. fetus ss. veneralis (Fiorent, 1959)	Not normal flora; found in boylne semen, preputial fluid, cervical mucus; will not grow in human or animal GI tract	Enzootte abortion and sterility in cattle; venereal transmission; not associated with human disease.
	Campytokacter fetus 8s. intestinalis	C. fetus ss. venerealis biotype intermedius C. fetus ss. fetus	Vibrio fetus	V. fetus ss. intestinalis (Fiorent, 1959)	Not normal flora, found in placentas and yastric contents of aborted owine and bovine fetuses, in bile, GU, and GI tracts, Will grow in human and animal GI tracts	Abortion in sheep; sporadic abortion in califle; oral transmission; usual cause of systemic human disease
	Campylobacter fetus ss. jejuni	C. jejuni, C. coli (?)	"Related vibrios"	Vibrio Jejuni (Jones, et al., 1931).	Normal GI flora in swine, sheep, cattle, goats, chickens, turkeys, wild birds. Will grow in human and animal GI tracts	Abortion in sheep; enteritis in heifers, caives; avian vibrionic hepatitis (pouliry); usual cause of human enteritis, occasional sepsis.
=	II. Campylobacter sputorum 88.	C, sputorum	Víbrio sputorum		Normal human oral flora (in gingival crevices)	None described; ? human saprophyte.
	suptorum. Campylobacter sputorum ss. bubulus	C. bubulus	Vibrio bubulus		Normal GU flora in sheep and cattle found in vaginal and preputlal mucus, in semen.	None described; ? bovine saprophyte
-	III. Campylobacter				Found in sheep feces, bovine vagina, and semen	None described

rom (Rettig, 1979)

one. This organism is also responsible for sporadic abortion in cattle and it is the subspecies usually responsible for systemic disease in humans (Smibert, 1978)¹⁰¹. It may result in bacteremia relapsing fever, endocarditis, pericarditis, meningitis, thrombophlebitis, salpingitis, lung and chest wall abscesses, septic abortions, septic arthritis and Reiter's syndrome (Rettig, 1979)⁸⁷.

Campylobacter fetus ss. jejuni was first described by Janes and Little in 1931^{53} in association with acute diarrheal disease in cows and calves. It is also a sporadic cause of ovine abortion and the etiologic agent of avian hepatitis, a poultry disease. It is synonomous with the "related vibrios" of King $(1957)^{60}$ and is the subspecies usually responsible for acute enteritis in man.

The remaining campylobacter species, C. sputorum and C. faecalis, are usually found as normal flora of man, cattle and sheep. They are non pathogenic to man (Rettig, 1979)⁸⁷.

CAMPYLOBACTER ORGANISM

Historical Aspect:

Vibrio fetus (now campylobacter) was first isolated in 1909, where it was associated with abortion in sheep and cattle. In 1947, it was cultured from human blood (Vinzent et al., 1947)¹¹⁴. Later, it was recognized as an opportunistic pathogen of debilitated patients (Bokkenheuser, 1970)¹². The possibility that V. fetus could be also associated with enteric disease was first described by Elizabeth King (1957)⁶⁰. She observed that V. fetus isolates could be divided into two groups on the basis of thermophilic characteristics. The "related vibrios" that were isolated from blood of patients with diarrhea grew best at 42°C (King, 1957)⁶⁰. But, the development of a selective medium for the isolation of these organisms from stool samples was necessary (Dekeyser et al., 1972)²⁹. The first positive stool cultures for these organisms were reported by Butzler, Dekeyser, and colleagues from Belgium (Butzler et al., 1973)²².

Stool specimens were filtered through a 0.65 micron millipore filter and cultured in 5% oxygen atmosphere on thioglycollate agar containing bacteracin, polymyxin, novobiocin and actidione. In 1977, Skirrow, using first a modification of Dekeyser's method and culturing unfiltered stool specimens on blood agar containing vancomycin, polymyxin B, and trimethoprim corroborated the Belgian finding that these organisms are a common cause of diarrhea.