

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

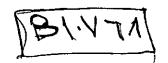
نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



Faculty of Medicine
Assiut University
Orthopedic & Traumatology Department

Surgical Management of Spinal Metastases

Thesis

Submitted for Partial Fulfillment of the Master Degree of orthopedic surgery & Traumatology

By Rafik Ragaei Daoud

M.B., B. Ch.

Department of orthopedic surgery & Traumatology

Assiut University Hospital

Supervised by

Prof. Dr. Essam El-Sherif

Prof. of Orthopedic Surgery and Traumatology
Faculty of Medicine
Assiut University

Dr. Mohamed Gamal Hassan

Assistant Prof. of orthopedic Surgery and Traumatology
Faculty of Medicine
Assiut University

Dr. Al-Moataz El-Sabrout

Assistant Prof. of orthopaedic Surgery and Traumatology
Faculty of Medicine
Assiut University

LIST OF ABBREVIATIONS

GIT = Gastrointestinal tract.

CT = CAT scan (Computerized Tomography)

MRI = Magnetic resonance imaging.

LH = Leutenizing Hormones

LHRH = Leutenizing Hormones Releasing Hormone.

LSJ = Lumbosacral junction.

Gd = Gadolinium.

PTA = Posterolateral transpedicle approach.

TES = Total enbloc spondylectomy.

PLL = Posterior longtudinal ligament.

MIRA = Minimal invasive retroperitoneal approach.

FSU = Functional spinal unit.

Z joint = Zagopophyseal joint.

SCF = Cerebrospinal fluid.

TSRH = Texas Scottish Rite Hospital Spinal Instrumentation System.

MMA = Methylmethacrylate.

TPSF = Transpedicular screw fixation.

MRI = Magnetic resonance image.

CTG Needle = C.T. Guided Needle.

Tel. No. = Telephone Number.

CD = Cotrel Dubousset Instrumentation System.

LSI = Lumbosacral junction.

CONTENTS

Title	page
ACKNOWLEDGMENTS	•
INTRODUCTION AND AIM OF THE WORK	. 1
Chapter 1: REVIEW OF THE LITERATURE	
Surgical Anatomy of the Spine	. 3
Clinical Biomechanics and Stability of the Spine	. 17
Pathophysiology and Pathoanatomy of Spinal Metastases	. 29
Pathology of Spinal Metastases	. 34
Diagnosis of Spinal Metastases	. 36
Classifications of Spinal Metastases	. 52
Treatment of Spinal Metastases	. 56
Assessment of Response of Metastases Treatment.	109
Prognosis and Outcome of Therapeutic Management	. 116
Chapter 2: PATIENTS AND METHODS	. 122
Chapter 3: ILLUSTRATIVE CASES AND RESULTS	. 130
Chapter 4: DISCUSSION	. 135
Chapter 5: SUMMARY AND CONCLUSION	153
REFERENCES	157
ARABIC SUMMARY	

AKNOWLEDGEMENTS

Acknowledgments

Praise be to **Allah**, the Merciful, the Compassionate for all the countless gifts I have been offered. Of these gifts, those persons who were assigned to give me a precious hand so as to be able to fulfill this study.

I deeply express my sincere appreciation and gratitude to **Prof. Dr. Essam El-Sherif**, Professor of Orthopedic Surgery and Traumatology, Faculty of Medicine, Assiut University, for his great help and his support in supervising me while preparing this study and he did not spare any effort in guiding me towards the best of the work. He also assisted my very much in clinical practice in residence period in Assiut University Hospital. I am greatly thankful for his expectant assistance and unlimited support, which have honored this work.

I would also like to express my sincere appreciation and gratitude to **Dr**. **Mohamed Gamal Hassan**, Assistant Professor of Orthopedic Surgery and Traumatology, Assiut University Hospital, Faculty of Medicine, Assiut University. I am grateful for his expert assistance in preparation of this study and also assisted me very much in clinical practice in residence period in Assiut university Hospital.

I am particularly indebted to **Dr.** Al-Moataz El-Sabrout, Assistant Professor of Orthopedic Surgery and Traumatology, Assiut University Hospital, Faculty of Medicine, for his unlimited guidance, patience and efforts which made this study and I hope I did not impose too much burden on him. Thanks for his meticulous care and his constructive criticism.

My respectful gratitude to our **Prof. Dr.** G. Z. Said, Professor of Orthopedic Surgery and Traumatology Department, Assiut University Hospital, Faculty of Medicine. The man we much proud of working under his fatherly guidance, for his specially experienced advise encouragement, and for his kind attitude as well as his experience advice.

I would like to express my sincere thanks, deepest gratitude and my respect to **Prof. Dr.** A. H. Ibrahim, Professor of Orthopedic Surgery and Traumatology, Assiut University, for his fatherly attitude and continuous encouragement.

My respectful gratitude to our **Prof. Dr.** Karam Allah Rhamadan Ahmad, The Head of Orthopedic Surgery and Traumatology Department, Assiut University Hospital, Faculty of Medicine. The man we much proud of working under his fatherly guidance, for his specially experienced advise encouragement, and for his kind attitude as well as his experience advice. The man who stands behind me all the time and encourages me continuously. Thanks for his meticulous care and his constructive criticism.

I would like to thank **Prof. Dr.** Maher El-Assal, Professor of Orthopedic Surgery and Traumatology, Assiut University, for his fatherly attitude and continuous encouragement.

I would like to express my respective gratitude to **Dr.** Hassan Mohamed Ali, Assistant Professor of Orthopedic Surgery and Traumatology, Assist university Hospital for his continuous encouragement, help, guidance and his unforgettable care and support to establish this work. The first man who supplied this work with generous materials.

I would like to thank **Dr**. *Mohamed El-Sharkawy*, Lecturer of Orthopedic Surgery and Traumatology, Assiut University Hospital.

I would like to thank **Dr.** Amr El-Sayed, Assistant Lecturer, Orthopedic Surgery and Traumatology, Assist University Hospital.

Rafik Ragaei

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

The spine is the most common site for skeletal metastases, irrespective of the primary tumor involved, Fig. (1). Metastatic disease of the spine occurs in as many as 70% of patients with disseminated cancer and may result in vertebral collapse, spinal instability, and progressive neurologic compromise (*Harrington*, 1993).

Lesions associated with primary tumors from the breast, prostate, kidney, thyroid and lesions associated with lymphoma and myeloma account for 75% of all spinal metastases. When lung cancer is included the percentage is greater than 90% (*Bell*, 1997). Multiple myeloma and lymphoma are the most common sources of disseminated skeletal lesions. Although whether they are classified as metastatic or primary lesions has varied from author to author making an accurate assessment of their relative importance is difficult.

When only the solid tumors are considered, breast, lung and prostate carcinoma comprise the majority of spinal metastases, followed by renal, GIT and thyroid carcinoma.

The clinical behaviour of the primary tumor will determine the perceived prevalence and ultimately determine the clinical importance of that lesion for each patient. For example, patients with breast and prostate carcinoma frequently survive long enough to require treatment of their spinal metastases, whereas patient with pulmonary malignancy often succumb so rapidly that little more than supportive care is required. Because GIT Carcinoma tends to involve the liver and lung long before it involves the spine, these patient often die before their spinal lesion becomes clinically apparent.

Moreover, the thoracic spine is the most common site associated with serious neurological complications and intractable pain due to vertebral collapse, spinal instability and nerve root compression.

The incidence of spinal metastases in patients with cancer varies between 30% and 70%, and all these patients are at risk for developing symptomatic spinal cord compression. This risk increases continuously as the life expectancy of patients with tumors is prolonged by advances in oncologic treatment. However, the various treatment methods for patients with spinal metastases are only palliative, and survival may be for only a few months, (Weigel et al., 1999).

The majority of cervical spine metastatic lesions will be amenable to non operative aggressive modalities, aimed at shrinking tumor size and halting growth. Surgical intervention is limited to specific indications, including spinal instability, progressive neurologic deterioration from bony collapse and compression, intractable pain, and failure of conservative means of treatment (*Jenis et al.*, 1999).

The surgical treatment of spinal metastases depends on many factors. These include; the type of the tumor, its location, presence or absence of neural compression, the portion of the vertebra that involved, the anticipated mode of spinal failure, the biology of the tumor, the anticipated life expectancy of the patient, the type of prior or subsequent adjuvant treatment and the patient overall functioning and medical status.

The surgical approach of spinal metastases is dictated largely by the location of the tumor within the spine; anterior vertebral body tumors generally should be approached anteriorly, whereas posterior lesion, should be approached posteriorly. Anterior decompression should be accompanied by reconstruction with biologic material such as autogenous bone graft unless life expectancy is certain to be very limited (< 6 months).

The goals of surgery are: first, to improve pain and quality of life, secondly to prevent, improve, or even restore neurologic function, and last but not least to correct kyphotic deformity. Because of the anatomic considerations, local control may be the only feasible goal, (Lord et al., 1986).

Spinal metastases are estimated to occur in 59% of patients with cancer or 18,000 patients per year in the united states. Recent studies have suggested that cervical involvement may occur in as much as 20% of all metastatic spinal tumor. Incidental discovery of metastatic vertebral tumors has been reported in 36% of cases (*Jenis et al.*, 1999).

AIM OF THE WORK

The aim of this work is to evaluate the surgical management for cases of spinal metastases used in Orthopedic Department in Assiut University Hospital.

Incidence and distribution of skeletal metastases

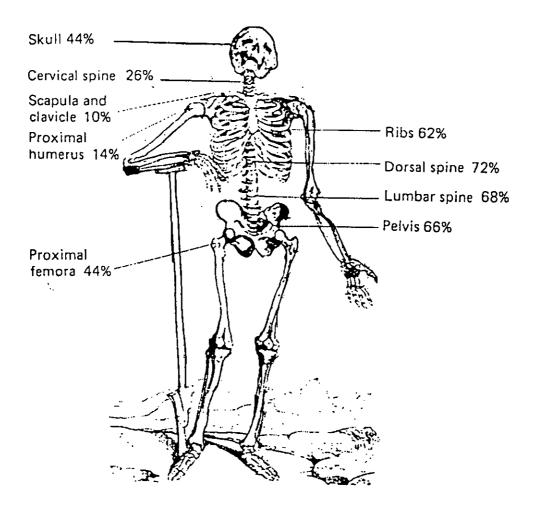


Fig. (1): The distribution of skeletal metastases (Galasko, 1986).