IMMUNOGLOBULIN A IN THE CERVICAL MUCUS

0F

TRICHOMONAS VAGINALIS INFECTED WOMEN IN EGYPT

 \setminus , \wedge

THESIS

Submitted for the partial fulfillment of the

Master Degree in Obstetrics and Gynae'

Ву

VERKEEN FOUAD STEFANOS M.B.B.CH.

Under Supervision of

PROF.DR. IKRAM SHOKRY-M.D PROF. OF OBSTETRICS AND GYNAECOLOGY, AIN SHAMS UNIVERSITY.

MOLLS

DR. AHMED RASHED - M.D LECTURER OF OBSTETRICS AND GYNAECOLOGY, AIN SHAMS UNIVERSITY. DR.SAMTA A.MARAI MAKHLOUF-PH.C ASS. PROF.OF PARASITOLOGY AIN SHAMS UNIVERSITY.

AIN SHAMS UNIVERSITY FACULTY OF MEDICINE

CAIRO-1985

ACKNOWLEDGEMENT

I wish to express my sincere thanks and gratitude to Prof. Dr. Ikram Shokry Prof. of Obstetrics and Gynae-cology, Ain Shams University, for his kindness and guidance and instructive supervision.

My sincere appreciation should be expressed to Prof. Dr. Magda, E. Azab, Prof. of Parasitology, Ain Shams University for her honest guidance, advice, help and encouragement through the work.

I am thankful to Prof. Dr. Mohamed, E. Azzam, Prof of Obstetrics and Gynaecology, Ain Shams University, for his valuable assistance and help.

I wish also to express my great appreciation to Ass. Prof. Dr. Samia A. Marai Makhlouf, Parasitology Department, Ain Shams University for her valuable assistance and help.

I am also thankful to Dr. Ahmed Rashed, Lecturer of Obstetric and Gynaecology, Ain Shams University for his untiring effort and careful supervision and encouragement.

Thanks to all the staff members and Personnel of Gynaecology and Obstetric Department, and Parasitology Department of Ain Shams University for their cooperation and help.

CONTENTS

Pa	age
INTRODUCTION	1
A1M OF THE WORK	4
THE FEMALE GENITAL TRACT	5
External Gcnitalia	5
-Pathological vaginal discharge	10
-Diagnosis of the cause of the	
vaginal dishcarge	11
Internal Genitalia	15
-The natural defences of the genital	
tract	19
-Types of infecting organisms	20
TRICHOMONAS VAGINALIS	22
Morphology	22
Epidermiology	22
Pathogenicity	26
Clinical picture	29
Complications	32
Methods of transmission	33
Diagnosis of Trichomoniasis	34
Treatment	36
IMMUNITY	40
1.Non-specific =Innate=Natural Immunity	40
2.Acquired immunity	44
-Cellular Immunity or cell Mediate	
Immunity	44
-Humoranl Immunity	45
Immunoglobulin G (IgG)	49
Immunoglobulin M (IgM) Central Library - Ain Shams University	50

LIST OF FIGURES

	· -3	_
Fig. 1 :	Trichomonas vaginalis trophozoite 2	3
Fig. 2 :	Antibody model 4	8
Fig. 3 :	Model for secretory IgA 5	4
Fig. 4:	Model for polymeric IgA 5	4
Fig. 5 :	Standard curve 8	8
	LIST OF TABLES	
Table 1:	Physico - chemical properties and	
	other brochmical characteristics of	
	Immunoglobulins of man 5	6
Table 2:	Presenting symptons related to	
	T. vaginalis infection 8	4
Table 3:	Relation of the vaginal discharge	
	to menstrual cycle in $\underline{I.}$ vaginalis	
	infected cases 8	4
Table 4:	Characters of vaginal discharge in	
	I. vaginalis infected 35 cases 8	6
Table 5:	Signs found in 35 <u>I. vaginalis</u>	
	infected cases 8	6
Table 6:	Levels & mean conc. + S.D. of IgA	
	in cervical mucus in the control	
	group 8	9
Table 6:	Levels & mean con. of IgA in cervical	
	mucus in T. vaginalis infected	
		_

INTRODUCTION

Trichomonas vaginalis was discovered for the first time by Donnè(1836); when he visualized motile microorganisms in the vaginal discharge of women presenting with leukorrhea and genital irritation. He described it as a rounded organism, larger than a red blood cell, with a long row of fine cilia on its side, and posteriorly the body ended indeterminately. Later on it was described as the largest flagellated parasite occuring in man.

In females, the parasite usually affected the vagina, cervix, urethra, urinary bladder, Skene's glands and occasionally Bartholin's glands. But the organisms do not as a rule ascend into the uterine cavity or reach the Fallopian tubes (Catterall, 1972; Jeffcoate, 1982), and parasitaemia does not occur (Ackers, 1975). Naguib et al. (1966) believed that the parasite was a harmless commensal and not associated with symptoms.

In males, <u>T.Vaginalis</u> was found to affect the urethra, prostate, seminal vesicle, epididymes, bladder and kidneys causing urethritis, prostatitis and vesiculitis (Catterall, 1972). Symptomless male carriers have been recorded (Jeffcoate, 1982).

Trichomoniasis was considered as a venereal disease (Trusell, 1947; Catterall and Nicol, 1960; Morag, 1976; Anthony and Stephen, 1980; and Holbrook, 1982) as the main method of transmission is by sexual intercourse. Some authors detected the parasite in new borns, young girls and women of the same family. This raised the possibility of extrasexual transmission by contaminated articles, such as contaminated domestic towels, bed linen and improperly sterilized surgical instruments such as specula (Jeffcoate,

In the female reproductive tract, local antibody production was first investigated by Pierce (1947) who showed that vaginal secretions contained a higher titre of antibodies to Trichomonas than serum. The formation of immunoglobulins in the lamina propria of the endocervix in response to specific acute local infection was studied by Chipperfield and Evans (1972), and plasma cells containing IqA, IqG and IqM were identified. Infection by Neisseria gonorrhea, Trichomonas vaginalis and Candida albicans was associated with an increase in IgA producing plasma cells, but in trichomoniasis IqM containing plasma cells were more prominent. Immunoglobulin A in cervical mucus is the secretory lgA which is resistant to proteolysis. This secretory IgA when present on epithelial surfaces appears to possess both virus neutralizing and considerable antibacterial activity, further the coating of the organisms by secretory IqA causes

1982).

agglutination thus inhibiting their invasive capacity.

The uterine cervix is biologically similar to the other external secretory glands of the body in that it serves as a barrier - preventing the bacteria of the vagina from entering the sterile uterine cavity. (Hulka and Orman, 1969).

AIM OF THE WORK

The aim of this work is to study the immunoglobulin A in endocervical secretions of Trichomonas vaginalis infected women in Egypt.

THE FEMALE CENITAL TRACT

The organs of reproduction of women are classified as external and internal. The external organs and the vagina serve for copulation; the internal organs provide for development and birth of the fetus (Williams, 1980).

External Genitala.

The external organs of female genital tract are commonly designated the vulva, which includes:

Mons pubis, is the fat filled cusion over the anterior surface of the symphysis pubis. After puberty, the skin of mons pubis is covered by curly hair.

labia majora, which are two rounded folds of adipose tissue covered with skin, extending downward and backward from the mons pubis and merge into the perineum posteriorly, where they join medially to form the posterior commissure.

Labia minora, they are two flat reddish folds, made of connective tissue and covered by stratified squamous epithelium, it converge anteriorly where each divided into two lamellae, the lower two of which fuse to form the frenulum

The PH of the vagina in adult women varies with the level of the vagina, being highest in the upper part because of an admixture of alkalin cervical mucus. Some authorities give the normal range of 3.5 to 4.2, but the generally accepted figures are from 4.0 to 5.5, with an average of 4.5 (Jeffcoate, 1982). The PH of the vagina varies with the time in the menstrual cycle and effects of ovarian hormones, during menstruation the flow of alkaline blood raises the vaginal PH to levels of from 5.8 to 6.8.

The acidity of the vagina is of great importance for it explains the resistance of the mature vagina to pyogenic organisms.

The vagina undergose some changes in different ages, so the vagina of the newborn child is under the influence of oestrogen which has crossed the placenta from the maternal circulation. The epithelium is therefore moderately well developed and contains glycogen, <u>Doderlein's bacillial</u> appear by the third or fourth day when the vaginal acidity approaches that of an adult (PH 4.5 \rightarrow 7). By 10 - 14 days the oestrogen stimulus is lost and the epithelium atrophies and becomes devoid of glycogen, the PH then rises to approximately 7 and remains at that level until the approach of puberty when, with the enset of full ovarian function. Throughout childhood <u>Doderlein's bacillial</u> are present in small numbers but after puberty they are the predominant organism. During pregnancy the acidity of the vaginal is high (PH 3.5 - 4.5). After the menopause the epithelium atrophies and loses its glycogen,

Doderlein's bacilli are found in fewer numbers and the PH rises to a range of 6 - 8. In some women menopausal atrophy is slow to develop, possibly because of oestrogen production by the adrenal or by the cells of overian stroma (Joffcoate, 1982).

Vaginal discharge: The vagina of the adolescent and adult woman in the reproductive years is lined by a layer of stratified squamous epithelium 10 to 30 cell thick; the thickness, activity and glycogen content being controlled by variation in the level of circulating destrogens. Oestrogen act as an enzyme, causing an increase in the RNA content of the cell and the synthesis of protein and glycogen. The glycogen is formed only in the superficial cells. these cells have been exfoliated, the glycogen is converted into lactic acid by the lacto-bacilli of Ooderlein, which are the normal vaginal inhabitants, the vagina also harbours large numbers of bacteria, mainly Staphylococci and micrococci, corynebacteria, bacteria of faecal origin, aerobic Streptococci, Betahaemolytic Streptococci and vaginal yeast. These bacteria are non pathogenic and are normal vaginal inhabitants (Jones, 1978).

Only in certain circumstances, due to a change in vaginal acidity, epithelial resistance or damage, do the vaginal flora become pathogenic. For example before puberty and after the climacteric, when destrogen production is low, the vaginal epithelium tend to be inactive and only a few cell layers thick. The cells are of the intermediate or parabasal types,

contain no glycogen and <u>Doderlein's bacilli</u> are absent, so that the PH raises to between 6 to 7. The relatively inactive epithelium of a postclimateric women is prone to infection, whilst the manylayered acid vagina of a young woman is resistant to most pathogens.

The normal vagina is kept moist by a transudate from the vaginal wall and by the secretions of the columnar cells of endocervix. During the menstrual cycle, the quantity of the secretions varies, and is related to the oestrogen production. The peak is reached at ovulation, when a much greater exfoliation of the vaginal epithelial cells occurs, so that some women notice a vaginal discharge only at this time (Jones, 1978).

The amount of vaginal discharge ordinarily present in adults is such that the introitus feels confortably moist but there is not enough to leave more than an occassional stain on underclothes. It is normally increased in:

- At the time of ovulation
- During a few days premenstrually when there is increase secretion from all parts of genital tract.
- During pregnancy
- During sexual exitement du to Bartholin's qlands secretion.

A non blood, non infected vaginal discharge is named leukorrhoea, it can therefore considered largely physiological, it consists mainly of the cervical component, it contain mucus, epithelial depris, organisms of various kinds, some leucocytes but it never contain more than occassional pus cell. It can stain clothing if not removed by bathes and change the clothing, it causes excoriation and soreness of the vulva, but it never causes pruritus and is never offensive (Jeffcoate, 1982).

Pathological vaginal discharge

An irritant discharge from the vagina often indicates a true vaginitis due to a pathogens, the discharge caused by infection is mucopurulent or frankly purulent, its colour varies from cream to yellow or green, it is often offensive, especially when Coliform bacilli are present as primary or secondary invaders. Its chief microscopic characteristic is the presence of pus cells. The commonest lesions causing a discharge of this kind are as follows:

A) Infection

- 1) Vulvovaginitis du to infection with the <u>Gonococcus</u>, <u>Trichomonas vaginalis</u> and <u>Candida albicans</u> in the adult and with non specific organisms in the childhood and old age.
- Cervicitis, gonococcal or puerperal; secondary infection of an erosion.
- 3) Endometritis, puerperal, tuberculous or senil.

4) Secondary infection of wounds, abrasions and neoplasms sited in any part of the genital tract.

B) Neoplasms

Any growth which is exposed to the lumen of the gential tract can cause a continuous discharge which is at first white or cream and non offensive. Only when the growth becomes ulcerated and infected, the discharge become purulent, offensive and blood stained. This symptoms are charcteristic of a malignant neoplasm but they are also caused by benigh lesion such as cervical polyp and submucous fibroid.

C) Urinary and Faeculent Discharge
The vaginal escape of faeces or urine can be confused with a vaginal discharge.

D) Rarities

These include the intermittent emptying of a hydrosalpinx or ascitic fluid through the Fallopian tubes and uterus (Jeffcoate, 1982).

Diagnosis of the cause of the vaginal discharge:

CLINCAL HISTORY

Amount of the discharge is judged by the need to wear a sanitary towel. Onset - Leukorroea has a gradual onset.

A sudden onset of discharge nearly always means infection.

Relation to menstruation, ovulation and pregnancy -

Central Library - Ain Shams University