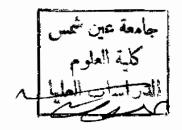
ENERGY AND ELECTRON TRANSFER PROCESSES

0F

METALLOTETRAPHENYLPORPHYRINS


1.08014

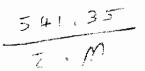
A THES IS

Presented to

Faculty of Science

Ain-Shams University

Ву


ZEINAB MOHAMED AHMED ABOU-GAMRA

(M.Sc.)

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CHEMISTRY

1987

Adda by the party of the property of the party of the par

SIR GEORGE PORTER, P'R S

TELEPHONES 01-409 2992 01-493 2710

THE ROYAL INSTITUTION, 21 ALHEMARI E STREET, LONDON, WLX 4BS

1st October, 1986

To the Departmental Head,
Department of Chemistry,
Ain Shams University,
Abbassia,
Cairo,
EGYPT

Dear Sir,

This is to acknowledge that Miss Zeinab Abou-Gamra has completed her course of scientific study at the Royal Institution. The experimental work that she has performed during her two years at the Royal Institution is sufficient, both as regards quantity and quality, to justify submission of the work for a Ph.D. award.

Yours faithfully,

ENERGY AND ELECTRON TRANSFER PROCESSES OF METALLOTETRAPHENYLPOR PHYRINS.

Thesis Advisors

Prof. Sir George Porter

Prof. Dr. N.M. Guindy

Prof. Dr. N.E. Milad

Dr. M.I. Ismail

Approved

Prof. Dr. N.M. Guindy

Natila M. Cal

Head of Chemistry Department

ABSTRACT

Over the past decade there has been a considerable interest in systems capable of photodissociation of water upon irradiation with visible light since this provides a means of storing sunlight in the form of chemical potential. The system—used here—for such a purpose involved irradiation by visible light of metalloporphyrins in water containing suitable electron donor or acceptor. Metalloporphyrins were chosen as nature makes extensive use of it as a chromophore in photosynthesis. Porphyrin redox products were also tested for their ability to dissociate water together with the factors affecting their stability.

The photoreduction of Antimony (V) and Gold (III) porphyrins gave stable π -radical anions due to their high electronegativity, while the photoreduction of vanadyl porphyrin gave a very short lived π -radical anion which decayed to phlorin, chlorin and porphodimethene derivatives depending upon the pH and the nature of porphyrin periphery groups. Zn-porphyrazine which absorbs a high fraction of sunlight was found to be not useful photosensitizer as its π -radical anion has a short life-time as well as its redox potential is close to zero, and consequently, photogeneration of hydrogen is unlikely to occur except in acid solution where it tends to demetallate. The formation of π -radical anions were investigated by steady state photochemistry, pulse radiolysis and electrochemistry.

Photooxidation of metalloporphyrins were also studied, Au(III)gave isoporphyrins and dihydroxyporphyrins depending on the pH, while Pb(II) formed Pb(IV) porphyrin. For both compounds, the primary product was the π -radical cation which disproportionated too rapidly to be used to oxidize water to O_2 on the surface of a catalyst. On the other hand Zn-porphyrazine and many other metalloporphyrins were highly resistant towards photooxidation and they preferred a reductive pathway.

Porphyrins have attractive photophysical properties but their absorption profile could be improved by substitution with light absorbing groups. Biphenyl was used as a test system, but it was found that its photophysical propoerties as donors were affected strongly by the type of linkage used to bind it to the porphyrin.

Water-soluble thioxanth-9-one was tested as an alternative photosensitizer. The compound participated readily to photoredox reactions, apparently via its singlet excited state in contrast to the use of metalloporphyrins which involved the triplet state, yet this cheap and nontoxic material did not collect a sufficient amount of solar energy to be recommended as a photosensitizer.

CONTENTS

	•	Pa	ge
CHAPTER	1: Introduction	1	
1.1	: Photosynthesis	ź	
1.2	: Porphyrins and phthalocyanines	9	
1.3	: Photochemistry	1	4
1.4	: Energy transfer	1	5
1.4.1	: Intermolecular energy transfer	1	7
1.4.2	: Intramolecular energy transfer	1	9
1.4.3	: Oxygen - quenching	1	9
1.5	: Chemical reaction of excited states	2	0
1.6	: Thermodyamic considerations	2	1
1.7	: Other considerations	2	4
1.8	: Photoreduction of H ₂ O	2	7
1 .8. 1	: Dye sensitized redox reaction	2	7
CHAPTER	2: Experimental		
2.1 :	Material s	3	4
2.2 :	Techniques	4	2
2.2.1:	Absorption spectra	4	2
2.2.2:	Emission spectra	4	2
2.2.3:	Gas chromatography	4	6
2.2.4:	Flash-photolysis	4	7
2.2.5:	Pulse-radiolysis	5	3
2.2.6:	Steady-state irradiation	5	5
2.2.7:	Cyclic voltammetry	5	9

CHAPTER 3: Antimony (V) porphyrin radical anion in water a stable species!	Page
3.1 : Introduction	6 2
3.2 : Spectroscopic studies	6 8
3.3: :: Photoreduction of Sb VTPyP	7 1
3.4 : Electrochemistry	8 8
3.5 : Hydrogen production	9 2
3.6 : Sb ^V TPyP radical anion	9 5
3.7 : Stability of radical anion in aqueous solutions	99
CHAPTER 4: The mechanism of water reduction as	
photosensitized by gold(III)-porphyrins	
4.1 : Introduction	102
4.2 : Ground state spectrum	103
4.3 : Emission spectra	105
4.4 : Flash-photolysis	108
4.5 : Electrochemistry	110
4.6 : One electron reduction	113
4.7 : Two-electron reduction	119
4.8 : Hydrogen formation	121
Chapter 5: Reduction of vanadyl porphyrins an attempt to remove trace impurities from oil	
5.1 : Introduction	1 2 8
5.2 : Redox - reaction	129
5.2.1: Oxidation	1 2 9
5.2.2: Reduction	132

	Page
Chapter 6: Oxidation of gold (III) and lead (II) porphyrins	
in water-chacterization of the products	
6-1 : Introduction	144
6.2 : Photooxidation involving change in the oxidation state	
of the central metal	144
6-3 : Absorption spectra of Pb ^{II} TMPyP	149
6.4 : Emission spectra of Pbl TMPyP	149
6.5 : Oxidation of Pbl TMPyP	152
6.5.1: Chemical oxidation of Pb ^{II} TMPyP	152
6.5.2: Pulse radiolysis	153
6.6 : Photooxidation reactions involving the porphyrin ring	163
Chapter 7: Redox properties of Zn(II) porphyrazine in water	
7.1 : Introduction	174
7.2 : Photoredox properties	175
7.3 : Reduction of ZnTMPz ⁴⁺	175
7.4 : Oxidation of ZnTMPz 4+	180
CHAPTER 8: Photophysical properties of biphenyl derivatives an attempt to increase the light harvesting ability of porphyrins!	
8.1 : Introduction	184
8.2 : Absorption and fluorescence spectra	198
8.3 : Oxygen - quenching mechanisms	198
CHAPTER 9: Photochemical studies with thioxanth-9-ones	
in water, alternative photosensitizers to por	phyrins !
9.1 : Introduction	200
9.2 : Spectroscopic properties	202
9.3 : Pulse - radiolysis	210

	Page
9.4 : Cyclic voltammetry	216
9.5 : Photochemical reduction	219
9.6 : Photochemical oxidation	220
9.7 : Hydrogen production	223
9.8 : Photochemical oxygen - evolution	225
	229
REFERENCES	

LIST OF PUBLICATION

ARABIC SUMMARY

LIST OF FIGURES

Chapter 1

- Fig. 1.1: Structure of chlorophyll "a" and "b"
- Fig. 1.2: Z. scheme for green-plant photosynthesis
- Fig. 1.3: A hypothetical model of the photosynthetic unit in isolated chloroplasts
- Fig. 1.4: Scheme for (PS I)
- Fig. 1.5: Time scale for bacterial photosynthesis
- Fig. 1.6: Absorption spectrum of ZnTPP
- Fig. 1.7: Absorption spectrum of ZnTPP chlorin
- Fig. 1.8: Absorption spectrum of Zn-phthalocyanine
- Fig. 1.9: Typical energy level diagram
- Fig.1.10: Principle mechanisms of electronic energy transfer.
- Fig.1.11: Electronic energy level of metalloporphyrin as sensitizer
- Fig.1.12: The solar spectrum

Chapter 2

- Fig. 2.1: Absorption and fluoresence spectra of Ge^{IV} TMPyP
- N.B: [The source of Figs. (1.6, 1.7 and 1.8) is A. Rest "Light, Chemical Change and Life" Chapter 2, ed. by Coyle, R.R. Hill and D.R. Roberts].

- Fig. 2.2: Corrected and uncorrected fluorescence spectra of Ge^{IV}-TMP_VP
- Fig. 2.3: Schematic representation of flash-photolysis apparatus
- Fig. 2.4: Absorption spectrum of Ga^{III} TMPyP
- Fig. 2.5: Three-electrode arrangement for cyclic-voltammetry
- Fig. 2.6: Typical cyclic voltammogram. [Source, D.G. Davis "The porphyrins" ed. by D. Dolphin, 1978, Vol. 5 Chapter 4]

Chapter 3

- Fig. 3.1: Absorption spectra of SnV P, π -radical anion and Phlorin. [Source, A. Harriman, J. of Photochemistry, 1985, 29, 139].
- Fig. 3.2: Absorption spectrum of Sb TPyP
- Fig. 3.3: Fluoresence spectrum of Sb TPyP
- Fig. 3.4: Triplet-Triplet absorption spectrum of Sb^V TPyP and its triplet decay
- Fig. 3.5: Absorption spectra of Sb TPyP and its T -radical anion.
- Fig. 3.6: Absorption spectral profile following the course of reaction for irradiation of SbT PvP in presence of EDTA
- Fig. 3.7: Absorption spectra of bacteriochlorophyll [Source, Lindsay and Calvin, J. Am. Soc. 1966, 88, 4500] and Sb^VTPyP bacteriochlorin.

- Fig. 3.8: Fluorescence spectra of SbV TPyP chlorin and chlorophyll [Source, Zscheile and Harris, J. Phys. Chem., 1943, 47, 632]
- Fig. 3.9: Absorption spectrum of Sb^V TPyP radical anion recorded upon 10 µs flash photolysis technique
- Fig.3.10: Absorption spectral profile following the course of irraadiation of Sb TPyP in presence of NaBH₄
- Fig. 3.11: Absorption spectra of Sb^VTPyP-hexahydroporphyrin and Zn-hexahydroporphyrin, [Sourse, G.R. Seely and M. Calvin, J. Chem. Phys. 1955, 23, 1968]
- Fig. 3.12: Resonance structures of hexahydroporphyrin
- Fig. 3.13: Absorption spectrum of Sb TMPvP T-radical anion
- Fig. 3.14: Cyclic voltammogram recorded for SbVTPyP
- Fig. 3.15: Absorption spectral profile following the course of reaction for irradiation of Sb TPyP in presence of NADH and colloidal Pt catalyst.
- Fig. 3.16: Absorption spectra of Sb TPyP formed chemically and decayed by irradiation.
- Fig. 3.17: Absorption spectra of In III TMPyP, Sn IV TMPyP and Zn-TMPyP recorded upon pulse radiolysis technique. [Source, personal communication]
- Fig. 3.18: Fluoresence spectrum of SbVTPyP T-radical anion

Fig. 3.19: Electronic configuration of GS and ES of T-radical anion

Chapter 4

- Fig. 4.1: Absorption spectrum of Au¹¹¹ TMPyP (3) recorded in aqueous solution
- Fig. 4.2: Low temperature phosphorescence spectrum of Au^{III} TMPyP(3) recorded in aqueous ethanol at 80°K
- Fig. 4.3: Energy of top filled and lowest empty MO's of Au TPP
- Fig. 4.4: Triplet decay curves of Au^{III} TMPyP (3) and Au^{III} TMPyP(4)
- Fig. 4.5: Cyclic voltammogram recorded for Au^{III} TMPyP (3) and Au^{III} TMPyP (4) at pH = 7
- Fig. 4.6: Absorption spectral profile of the photoreduction Au^{III} TMPyP (3) and Au^{III} TMPyP (4)
- Fig. 4.7: Absorption spectral profile of gamma radiolysis of Au^{III}TMPyP (3)
- Fig. 4.8: Transient absorption spectrum observed 0.1 ms after flash photolysis excitation of Au^{III}TMPyP (3)
- Fig. 4.9: Plot showing the yield of H₂-obtained after I he irradiation of Au^{III} TMPyP (3) in H₂O containing NADH and Pt at various pH values
- Fig. 4.10: Traces showing the decay of Au^{III} TMPyP (3) at pH = 3.7 in presence of different concentration of Pt.