PLASMA OSMOLARITY AND BRONCHIAL HYPERREACTIVITY

Thesis

Submitted for partial fulfillment of Master Degree in Chest Diseases

 B_u

b) b. 23. *

Shorouk Hassib El-Batrawy

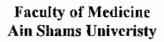
M.B.,B.Ch.

Supervised by

5378=

Prof.Dr. Adel Gomaa Aly

Professor of Chest Diseases Head of Chest Department Faculty of Medicine Ain Shams University


Prof.Dr. Hussein Aly Hussein

Professor of Chest Diseases Faculty of Medicine Ain Shams University

And assisted by

Dr.Sherif El- Bouhy

Ass. Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Contents

	Page
Introduction and aim of the work	1
Review of literature	2
Bronchial hyperreactivity	2
Definition	2
Epidemiology	2 2 2 4
Mechanisms	4
Other factors involved in BHR	19
Asthma and BHR	23
Relation ship of BHR to some respiratory	
disease states	24
Relation ship of BHR to some other disease	
states	26
Genetic influences and BHR	28
Methods of assessment of BHR	30
New techniques measuring airway response	44
Reproduciblity of bronchial provocation tests	45
Comparability of bronchial provocation tests	47
Relationship between acquired and	
endogenous BHR	47
Therapy	48
Osmolarity	51
Sodium and BHR	63
Diabetes mellitus and BHR	65
Chronic renal failure and BHR	74
Subjects & Methods	77
Results	84
Discussion	104
Summary and conclusion	113
Refrences	116
Appeadix	
Arabic Summary	
J	

List of Tables

Table No.	Title	Page
	(1) Review of literature	
1.	Mast cell derived mediators	12
2.	Major products released from alveolar macrophages	13
3.	Inflammatory products released by airway epithelial cells	15
4.	Factors influencing the results of bonchoprovocation tests	46
5.	The spectrum of diabetes.	66
1.	(2) Subjects & Methods: Order, color, concentration & cumulative dose of methacholine during provocation.	81
	(3) Results	
1.	The relationship between plasma osmolarity and reactivity to methacholine using Chai square test.	84
2.	The relationship between plasma osmolarity in diabetics and methacholine reactivity using Chai square test.	85
3.	The relationship between mean plasma osmolarity and reactivity to methacholine in the diabetic group using independent sample "t" test.	86
4.	Bronchial hyperreactivity in diabetic patients compared to the control group using Chai square test.	86
5.	The relationship between mean basal FEV ₁ and methacholine reactivity among diabetics using independent sample "t" test.	87

Table	Title	Page
No. 6	The relationship between mean blood glucose level and	88
	methacholine reactivity using independent sample "t" test	
7.	The relationship between mean duration of diabetes mellitus and methacholine reactivity using independent sample "t" test.	88
8.	The relationship between plasma osmolarity and methacholine reactivity in patients with chronic renal impairment using Chai square test.	89
9.	The relationship between mean plasma osmolarity among patients with chronic renal impairment using independent sample t test	90
10.	Bronchial hyperreactivity in chronic renal impairment patients compared to the control group using Chai square test.	90
11.	The relationship between mean basal FEV ₁ and methacholine reactivity among chronic renal impairment patients	91
12.	The relationship between mean urea level and methacholine reactivity among chronic renal impairment patients using independent Sample t test	92
13.	The relation ship between mean duration of renal disease and reactivity to methacholine	92
	(4) Appendix	
1.	Representative data of diabetic group	

- Representative data of chronic renal impairment group
 Representative data of control group 2.
- 3.

List of Figures

Fig No.	Title	Page
10.	Results	
1.	Hyperosmolarity among cases	94
2.	Hyperosmolarity among diabetic patients	94
3.	Hyperosmolarity among chronic renal failure patients	95
4.	Distribution of hyperosmolarity between diabetics and chronic renal impairment patients.	95
5.	Methacholine reactivity in hyperosmolar patients	96
6.	Comparison between the mean osmolarity in reactive and non reactive diabetics	96
7.	Distribution of hyperosmolarity according to methacholine reactivity in diabetic patients	97
8.	Comparison between the mean basal FEV ₁ in reactive and non reactive diabetic patients	97
9.	Comparison between the mean blood glucose in reactive and non reactive diabetic patients	98
10.	Comparison between the mean duration of illness in reactive and non reactive diabetics.	98
11.	Distribution of hyperosmolarity versus methacholine reactivity in chronic renal impairment patients.	99
12.	Comparison between the mean osmolarity in reactive and non reactive chronic renal impairment patients.	99
13.	Comparison between the mean basal FEV ₁ in reactive and non reactive chronic renal impairment patients.	100
14.	Comparison between the mean blood urea in reactive and non reactive chronic renal impairment patients.	100
15.	Comparison between the mean duration of illness in reactive and non reactive chronic renal impairment	101
L .	patients.	

List of Abbreviations

A.Ch. Acetyl choline

ACE Angiotensin converting enzyme

AN · Autonomic neuropathy

BA Bronchial asthma

BAL Broncho-alveolar lavage BHR Bronchial hyperreactivity

Ca²⁺ Calcium ion

CAHC Cold air hyperventlilation challenge

Cl- Chloride ion

COPD Chronic obstructive pulmonary disease

DRS Dose response slope

DTH Delayed type hypersensitivity

ECF Extracellular fluid

ELF Exercise induced asthma
ELF Epithelial lining fluid

ET Endothelins

FEV₁ Forced expiatory volume in one second

FVC Forced vital capacity

GCSF Granulocyte colony stimulating factor

GMCSF Granulocyte-Macrophage colony stimulating factor

IDDM Insulin dependent diabetes mellitus

IgE Immunoglobulin E IgG Immunoglobulin G

IL Interleukin

ISH Isocapnic hyperventilation

K+ Potassium ion

LAR Late asthmatic response

Na⁺ Sodium ion

Nacl Sodium chloride

NANC Non adrenergic non cholinergic

IIDDM Non insulin dependent diabetes mellitus

NANC Non adrenergic non cholinergic NIDDM Non insulin dependent diabetes mellitus Non significant NS Platelet activating factor. **PAF** provoking dose causing a 20% fall in FEV₁ PD_{20} PEF25-75 Peak expiratory flow in 25 - 75 secs. Peak expiratory flow rate PEFR Prostaglandin PGSCG Sodium chromoglycate Specific airway conductance sGaw Substance P SP

Transcutaneous blood oxygen pressure **TNF** Tumor necrosis factor Vasointestinal peptide VIP

TCPO

INTRODUCTION AND AIM OF THE WORK

Introduction

Bronchial hyperreactivity (BHR) is the extreme sensitivity of the airways to physical, chemical and pharmacologic stimuli (Boushey, H. et al. 1980)

It has a composite pathophysiology and has been studied extensively in terms of the position and shape of dose response curve to methacholine and histamine as well as other non specific bronchoprovocation tests which include inhalation of distilled water, inhalation of cold dry air, hyperventilation and exercise (Towenly, R. & Hopp, R.1987). The second major type of bronchial inhalation testing is testing with allergens and occupational low molecular weight sensitizing chemicals. (Cockcroft, D. et al. 1987).(1)

Patients with asthma may have an attack provoked by inhaling aerosols that increase or decrease the osmolarity of the fluid lining the airways such as water and hyperosmolar saline (Smith, C. et al 1989).

Plasma osmolarity can be closely estimated from routine analysis by measurement of serum sodium, serum glucose and serum urea (Carl, A. & Edward, R. 1994). When asthmatics were subjected to salt loading, lung functions deteriorated (Gomaa, A. et al. 1995).

Aim of the work

The aim of this work is to study the presence of any possible relation between increased plasma osmolarity and bronchial hyperresponsiveness in patients with hyperglycemia due to diabetes mellitus and those with increased blood urea due to renal function impairement.

