EFFECT OF FERTILIZATION LEVELS, METHODS OF DRYING AND PERIODS OF STORAGE ON THE SWEET MARJORAM HERB YIELD AND ITS ACTIVE INGREDIENTS.

BY

AZZA MANSOUR REFAAT

26089

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Medicinal and Aromatic Plants)

at the

Horticultural Department

Faculty of Agriculture

Main Shams University

APPROVAL SHEET

NAME

: AZZA MANSOUR REFAAT

TITLE

: EFFECT OF FERTILIZATION LEVELS, METHODS OF

DRYING AND PERIODS OF STORAGE ON THE SWEET

MARJORAM HERB YIELD AND ITS ACTIVE INGREDIENTS.

Ph.D. Thesis approved by :

... Anim M. El gam

...Khairy M. El-ganassy

. s. Apol. . . Amorh

(Committee in Charge)

Date: 14/2 /1988

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to supervision of Professor Dr. AMIN M. EL-GAMASSY, Horticulture Department, Faculty of Agriculture, Ain Shams University, for suggesting the point of this thesis, supervising the work and for his continuous advice and kind help in the presentation of this thesis.

I am grateful to Professor Dr. SALAH SAYED AHMED, Pharmaceutical Sciences Laboratory, National Research Centre, for his helpful assistance, support, kindness and consistent backing during the course of this work.

The author is also thankful for Dr. EL-SAYEDA EL-KASHOURY, Lecturer, Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, for her valuable assistance in the anatomic study.

Grateful acknowledgement is expressed to the staff members of the Pharmaceutical Science Laboratory, National Research Centre, for their assistance in this dissertation.

CONTENTS

	PAGE
INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	29
RESULTS AND DISCUSSION	40
I. EFFECT OF THE FERTILIZATION LEVELS ON THE YIELD AND VOLATILE OIL CONTENT OF SWEET MARJORAM PLANTS	40
1. The Mean Fresh Weight of Sweet Marjoram	40
Herb and Leaves.	
2. The Mean Dry Weight of Sweet Marjoram Per	47
Plant and Per Feddan.	
3. The Mean Oil Content in Sweet Marjoram	53
Leaves.	
II. DRYING OF SWEET MARJORAM HERB	60
1. Effect of the Drying Methods on the Oil	60
Percentage of Sweet Marjoram Plants.	
2. Effect of the Drying Methods and the	63
Fertilization Levels on the Chlorophyll	
Content in Sweet Marjoram Leaves.	
III. EFFECT OF THE STORAGE PERIODS ON THE OIL	68
PERCENTAGE IN SWEET MARJORAM LEAVES.	

107

107

ıv.	EFFECT OF THE STORAGE CONDITIONS ON THE PHYSICAL	72
	AND CHEMICAL CHARACTERISTICS OF SWEET MARJORAM	
	ESSENTIAL OIL DURING STORAGE.	
	1. Effect of the Temperature on the Physical and	72
	Chemical Properties of Sweet Marjoram Oil	
	During the Storage for One Year.	
	2. Effect of the Air on the Physical and Chemical Properties of Sweet Marjoram Oil During the Storage for One Year.	80
	3. Effect of the Light on the Physical and Chemi- cal Properties of Sweet Marjoram Oil During the Storage for One Year.	89
	4. Effect of the Kind of Container on the Physical and Chemical Properties of Sweet Marjoram Oil During the Storage for One Year.	95
V	. EFFECT OF THE FERTILIZATION LEVELS ON THE NUMBER,	102
	DIAMETER AND CELLS OF THE GLANDULAR HAIRS OF	
	SWEET MARJORAM LEAVES.	
	1. Number of the Glandular Hairs in the Fresh	102

Leaves of Sweet Marjoram Per mm².

Leaves of Sweet Marjoram.

2. Diameter of the Glandular Haris in the Fresh

3. Number of the Cells in the Glandular Hair

in the Fresh Leaves of Sweet Marjoram.

	PAGE
OIL COMPOSITION 1. The Oil Constituents of Sweet Marjoram as Affected by the Fertilization Levels.	111
A- Effect of the Fertilization Levels on the Constituents of Sweet Marjoram Oil.	117
B- Effect of the Cutting Time on the Constituents of Sweet Marjoram Oil.	118
2. The Oil Constituents of Sweet Marjoram as Affected by the Drying Methods and the Storage of the Leaves	124
A- Effect of the Drying Methods on the Constitu- ents of Sweet Marjoram Oil.	124
B- Effect of the Storage Periods of Sweet Marjor am Leaves on the Constituents of the Oil.	·- 134
3. The Oil Constituents of Sweet Marjoram as Affected by the Storage Conditions for One Year.	144
A- Effect of the Temperature on the Constituents of Sweet Marjoram Oil During the Storage for One Year.	144
B- Effect of the Air on the Constituents of Sweet Marjoram Oil During the Storage for One Year.	151
C- Effect of the Light on the Constituents of Sweet Marjoram Oil During the Storage for One Year.	154

	PAGE
D- Effect of the Kind of Container on the Constituents of Sweet Marjoram Oil During the Storage for One Year.	158
SUMMARY AND CONCLUSION	163
REFERENCES	174
ARABIC SUMMARY.	

* * *

INTRODUCTION

Sweet marjoram (Majorana hortensis Moench) is gaining a growing economic importance among medicinal and aromatic crops in Egypt. The informations available at the Egypt Organization of control of Import and Export show that Egypt exported about 1475, 1267, 1796, 2017.6 and 1862 tons of dried leaves in 1982, 1983, 1984, 1985 and 1986 respectively, to Europe and America with respective values of about L.E. 1320, 1360, 2856, 2340 and 2903.

Sweet marjoram is used medicinally as carminative and stimulant due to its strong, highly aromatic, spicy and pleasing odour and flavour. Its dried leaves are widely used as condiment for seasoning soups, stews, and especially certain types of sausage and food production in general. (Guenther, 1961).

Marjoram oil contains major components as: terpinenol-4, \(\frac{1}{2} \) -terpinene, D-limonene linalool, linalyl acetate, P-cymene, B-pinene and \(\frac{1}{2} \) -terpineol. Whereas the peaks number 1,2,8 and \(\frac{1}{2} \) -pinene represent the minor components.

Some of these components are used for scanting cosmotics and soap. Others are used for flavouring pharmaceuticals such as D-limonen and linalool.

Because of the low price of <-terpeniol and its typical lilac odour, it is used in the synthetic products.

(Balbaa, et al., 1981).

For all these uses there are great demands in the local and international markets for marjoram herb and oil.

This study was conducted to throw more light on the effect of N,P,K fertilization on the growth and yield of sweet marjoram plant, and the quality improvement of the oil through the fertilization programs.

The relative effects of the drying methods of the leaves such as shade, sun and oven drying were also studied and storage periods and their effects on the oil content in marjoram leaves were investigated.

Since the physiochemical properties of essential oils play a significant role in their evaluation, the study included both the chemical constituents and the chemical characteristics as effected by temperature, air, light and the container material during the oil storage period.

An anatomical study was also carried out for its importance in this respect.

REVIEW OF LITERATURE

I. EFFECT OF THE FERTILIZATION LEVELS ON THE YIELD AND VOLATILE OIL CONTENT OF SWEET MARJORAM PLANTS

No doubt that the production of medicinal and aromatic plants and their essential oil is greatly affected by the application of fertilizers.

Nitrogen is one of the essential elements for its vital effect on all growth processes in the plant.

Many workers found a positive relationship between the application of nitrogen fertilizer and the increment in the yield of marjoram plant, among them Barner, 1938, El-Beltagy, 1966, Nofal, 1976, El-Gamassy et al., 1977 and El-Sharkawy, 1981.

Similar results were obtained by Purdue 1950, Baird, 1957, Dutta et al., 1961 on Mentha arvensis, Shrubis 1964, Etman 1965, on mint, Nelson et al., 1970, on spearmint, and Lammerink and Manning 1971, on peppermint.

Putievsky and Kuris 1976, applied four levels of N (normal, twice, 3 times and 4 times of normal rates) to Origanum vulgare plants for 2 years. They noticed that the highest level which was applied after each harvest almost doubled the total yield compared with the control.

While Duhan <u>et al.</u>, 1977, found that there was no difference in the yield of <u>Mentha</u> <u>arvensis</u> herb between 60 and 90 kg nitrogen/ha. application.

The effect of nitrogen fertilization and harvest time were studied by Skrubis 1964, who reported that nitrogen fertilizer had a significant effect on peppermint, yield of the first harvest (Aug.) than that found in the second one (Nov.).

Regarding the effect of nitrogen fertilization on the percentage of volatile oil, Barner, 1938, stated that adding nitrogen fertilizer had increased the oil percentage of sweet marjoram. Wyile, Putievsky and Kuris, 1979, found that the level of nitrogen fertilizer had no effect on the percentage of essential oil of the Origanum majorana L. plant.

Concerning the effect of nitrogen fertilization on the essential oil yield, Nelson et al., 1970, found that nitrogen fertilization at 400 Lb/acre had significantly increased the oil yield of spearmint plants Franz 1972, mentioned that peppermint plants which were grown in pots and had been fertilized with 0.75-6.00 mgN./pot, the essential oil content was raised by 35% over the control.

Many workers found the favorable effect of nitrogen on the oil yield, among them, Rai et al., 1977, Duhan and Bhattacharya 1977, Shelke and Morey 1978, on Mentha arvensis, Singh et al., 1979 on Mentha citrata.

The composition of the essential oil as affected by nitrogen fertilizer was reported by many investigators, among them Clark and Menary, 1980. They found that oil of Mentha piperita fertilized plants contained high levels of menthol, menthyl acetate, menthofuran and limonene, and low levels of menthone and cineole.

The correlation between the nitrogen fertilizer and the increment in menthol and menthyl acetate content was reported by Singh et al., 1981, on Mentha arvensis and M.piperita plants.

The effect of the form of nitrogen on the yield of herb and oil was studied by Hotin, 1951, who reported that applying nitrogen in the form of ammonium, had increased the yield of Ocimum gratissimum herb. Also, Karawya et al., 1977, working with Mentha piperita, reported the same trend of results.

Singh 1978, found that ammonium nutrition reduced the shoot height, number of branches and the dry weight of <u>Mentha</u> arvensis plants. Khotin 1950, reported that the application

of ammonium sulphate on peppermint nearly doubled the oil yield in comparison with the unfertilized plants, especially when the fertilizer was applied at the early stage of growth. On the other hand, Karawya et al., 1977, found that applying the lower level of ammonium sulphate (150 kg/feddan) was favorably increased the oil production of Mentha spicata plants than the higher levels.

Singh and Singh 1979 studied the effect of nitrogen in the nitrate form on the yield of Mentha arvensis plants grown in sand culture. They found that the growth was increased by applying nitrate at 16 mg./liter, but above this rate yield was decreased. Concerning the effect of nitrate fertilization and the composition of the essential oil, Baslas 1970, found that adding sodium nitrate decreased the menthol content in the oil of Mentha piperita plants, grown in sandy soil.

Latypov 1960, made a comparison between the effect of the ammonia form of nitrogen and nitrate form and found that the ammonia form stimulated the production of Mentha piperita essential oil than the nitrate form.

Neubauer $\underline{\text{et al.}}$, 1974, found that urea application had increased the peppermint yields, improved quality and was economic.

Phosphorus is important and is needed by the plant as much as nitrogen. It inters in the composition of nucleoprotein and plastids which form vital parts of the living compounds, cytoplasm and nucleus. (Thus phosphorus have a good effect on increasing the yield of herb).

The increase in herb yield as a result of adding phosphorus fertilizer was found by Putievsky, 1978, on Origanum vulgare and El-Sharkawy 1981, on Majorana hortensis. Singh and Singh 1970, stated that the application of P_2O_5 at the rate of 90 ppm. had increased the fresh weight of Mentha arvensis leaves.

Baird 1957, found that phosphorus fertilization only caused small increase on the yield of mint herb. Skrubis 1964, also found that phosphorus had no significant effect on the peppermint yield in the first harvest.

Considering the effect of phosphorus fertilization on the oil yield, Baslas 1970, reported that adding phosphorus had raised the oil yield of Mentha piperita grown in sandy soil. The positive effect of phosphorus fertilization was proved by other workers such as Singh 1970, on Mentha piperita and Gupta et al., 1974, on M. arvensis. Baird 1957, found that