10211 /4

ENVIRONMENTAL INFLUENCE ON THE PRODUCTIVE AND REPRODUCTIVE PERFORMANCE OF THE WATER BUFFALOES

BY

LAILA NASSER

A Thesis submitted in partial fulfillment of the requirements for the degree of

26031

ومتالت

MASTER OF SCIENCE

iπ

Agriculture (Animal Physiology)

at the

Animal Production Department
Faculty of Agriculture

Ain Shams University

1988

26.293

APPROVAL SHEET

Title: Environmental Influence On The Productive and Reproductive Performance of the Egyptian Water Buffaloes.

Name: Laila Nasser Eid El-Sayed

This thesis has been approved by:

Prof. Dr.: It Sayed Keyby

Prof. Dr.: M. a. El-Fouly

Prof. Dr.: al a Mohamed

(Committee in Charge)

Date: //2/1988

TO
MY
PARENTS...

TABLE OF CONTENTS

	Page
- LIST OF TABLES	
- ACKNOWLEDGMENTS	
INTRODUCTION	1
REVIEW OF LITERATURE	4
1- Birth weight	4
2- Age at First Service	8
3- Age at Fertile Service	8
4- Age at first Calving	9
5- Weight at calving	13
6- Service period Length	16
7- Number of Services per Conception	19
8- Calving Interval	22
9- Total and 305 - day Milk yield	25
10- Lactation Period	30
11- Dry Period	33
MATERIAL AND METHODS	37
1- Source of Data	37
2- Management	38
3- Feeding and Watering	41
4- Metereological Data	42
5- Statistical Methods and Models	44
5 Statistical Helicas and Headis	- -

	Pāge
RESULTS AND DISCUSSION	56
1- Birth Weight	56
2- Age at first Service	61
5- Age at Fertile Service	65
4- Age at First Calving	69
5- Weight at Calving	73
6- Service Period Length	77
7~ Number of Services per Conception	81
6- Calving Interval	85
9- Milk yield	90
10- Lactation Period	95
11- Dry Period	99
GENERAL DISCUSSION	102
SUMMARY AND CONCLUSIONS	121
REFERENCES	127
APPENDIX	153

LIST OF TABLES

	Page
Tables 1 and 1-a: Least squares Means	
$(\pm SE)$ for birth weight, and ANOVA.	59 - 60
Tables 2 and 2 — a: Least Squares Means	
	63 - 64
$(\pm SE)$ for age at first service, and ANOVA	03 - 04
Tables 3 and 3 - a: Least Squares Means	
$(\pm$ SE) for age at fertile service, and	
ANOVA.	67 - 68
Tables 4 and 4 - a: Least Squares Means	
(\pm SE) for age at first calving, and ANOVA.	71 – 72
Tables 5 and 5 - a: Least Squares Means	
$(\pm SE)$ for weight at calving, and ANOVA.	75 - 76
Tables 6 and 6 - a: Least Squares Means	
(\pm SE) for service period length, and ANOVA.	79 – 80
Tables 7 and 7 - a: Least Squares Means	
$(\pm SE)$ for number of services/conception,	
and ANOVA.	83 - 84
Tables 8 and 8 - a: Least Squares	
Means $(\pm SE)$ for calving interval, and	
ANOVA.	88 - 89

	Page
Tables 9 and 9 — a: Least Squares Means	
$(\pm SE)$ for total and 305-day milk yield, and	
ANOVA.	93 - 94
Tables 10 and 10 - a: Least Squares Means (+ SE) for lactation period, and	
ANOVA.	97 ~ 98
Tables 11 and 11 - a: Least Squares	
Means (\pm SE) for dry period, and ANOVA.	100 - 101
Table 12 Summary of results for the	
significant (P<0.01) differences between	
both experimental farms.	116
Appendix Tables	153

Acknowledgment

ACKNOWLEDGMENTS

Deepest gratitude and sincere appreciation are expressed to Dr. El-Sayed A. Kotby, Professor of Animal Physiology, Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision, criticism and help during the research study and the preparation of this manuscript.

Special thanks are due to Dr. Laila H. Bedeir, Professor of Animal Breeding, Buffalo Breeding Research Department, Animal Production Research Institute, Ministry of Agriculture for sincere advice and for facilities provided to collect data.

The author wishes to express her sincere and deepest appreciation to Dr. Hanafy E. El-Sobhy, Associate Professor of Animal Physiology, Faculty of Agriculture, Ain Shams University, for guidance and help throughout the course of the study.

The author feels greatly indebted to Dr. Kawthar A. Mourad, Buffalo Breeding Research Department, Animal Production Research Institute for the statistical analyses of the data.

Thanks are due to Dr. Abdel-Halim A.Ashmawy, Associate Professor of Animal Breeding, Faculty of Agriculture, Ain Shams University, for valuable comments.

The author is indebted to fellow colleagues and members of the Buffalo Breeding Research Department of the Ministry of Agriculture for cooperation and help.

The love, encouragement and confidence of the author's family during the study program are greatly and deeply appreciated.

for all of this help, the author is very grateful.

INTRODUCTION

INTRODUCTION

In Egypt there are two regional types of buffalo, the heavier Beheri type in the Nile Delta, north, and the smaller and darker Saidi type in Upper Egypt, south. Apparently, each type is genetically and physiologically adapted to its local prevailing environment.

Very recently, the total buffalo population in the country is estimated to be 2.5 million heads, a figure similar to that for cattle population.

The buffalo is the major source of milk and meat. There are reasons to believe that buffaloes may be replacing cattle at the farmer's home, since mechanization of agriculture is developing fast. Since governmental buffalo population is estimated as 1% then the bulk is at the farmer's holding which averages 2-3 large farm animals, either cattle or buffalo cows or both. Such dispersion of animals renders it very difficult to employ modern husbandry and production methods. Some official estimates indicate that yearly increase in buffalo population is 1.7%, in cattle population is 1.4%, in sheep is 3.4%, while in human the annual increase in population is 2.4%.

So important is the buffalo animal in Egyptian

agriculture, it has been partially, or probably completely neglected since its reproductive performance is deteriorating during the past 30 years. As an example, birth weight has been reported as being 38.6 and 38.2 Kg for male and female calves, respectively in 1952, (Asker and Ragab), while it reached 32.0 and 31.5 Kg, for the respective sexes in 1985, (Osman). Various other reports between 1952 and 1985 gave values ranging from 22.7 kg., (Abdel-Salam, 1960), to 36.3 Kg, with males being 2 kg, heavier than females, (Mostageer, et al., 1981). Other physiological phenomena such as age and weight at puberty, sexual maturity and first calving, service period, calving interval and number of services per conception are not ideal since large values have been reported by various investigators.

In addition milk production (8 to 12% fat) is not so high as could be expected from such an animal. Most reports for Egyptian buffalo did not go beyond 1200 Kg. per lactation for the mature buffalo cow. Furthermore, lactation periods of longer than 30**5** days are not uncommon. The literature clearly show that the Egyptian buffalo might have superior reproductive and productive features as compared to Asian, European and Latin American buffaloes.

The Egyptian buffaloes need special attention, programs for improvement of their reproduction and milk production

should be performed at the national level.

This study aims at the evaluation of reproductive efficiency and productive capacity of two buffalo herds, one in the Delta and the other in Middle Egypt.