HYDRAULIC REACTIVITY OF SOME ARTIFICIAL POZZOLANIC MATERIALS

A THESIS

Presented to
The Faculty of Science
Ain Shams University
Cairo

KAWKAB KHAMIS FADUL AL-NOAIMI M. Sc.

XXX -

For the Degree of DOCTOR OF PHILOSOPHY

in CHEMISTRY 17177

1988

فالسوا

المنتخان العالية المائية

صَدَقَ لله العظيم

HYDRAULIC REACTIVITY OF SOME ARTIFICIAL POZZOLANIC MATERIALS

Thesis Advisors

Prof. Dr. S.A. Abo-El-Enein

Dr. A.F. Galal

Dr. E.E. Hekal

Approved

S.A. Abot 1-Energ

A.F.Galal

Eine Eitekal

Head of Chemistry Department

Nabila M. Guidd Prof. Dr. N.M. Guindy

~~~

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Prof. Dr. S.A. Abo-El-Enein, Faculty of Science, Ain Shams University, and Assoc. Prof. A.F. Galal, Building Research Institute, for suggesting the subject of this sutdy and for their kind help, discussions and their numerous valuable guidance during the course of this work.

The author is also wishes to thank Dr. E.E. Hekal, Faculty of Science, Ain Shams University for his kind help, and cooperation.

The author is indebted to Eng. Rashed Al-Mannai, Ministry of Industry and Engineering and Eng. Gassim Haggi, Ministry of Public Works and Petroleum for their cooperation and kind help during the course of this study.

The author also wishes to thank Prof. Dr. S. Hassan, Head of Chemistry Department, Assoc. Prof. I. Al-Noaimi, Vice Dean of the Faculty of Science, Prof. Dr. F. Sioud, Dean of Faculty of Science, Mr. A. Al-Sulaiti, General Director of Mission Department and Prof. Dr. A. Al-Kebaissi, Vice President, Qatar University, for their encouragement and all the facilities, they offered.

CONTENTS

•.	Page
CHAPTER I:	
Introduction and Object of Investigation.	
I.A. Introduction	1
I.B. Object of investigation	59
CHAPTER II:	
Materials and Experimental Techniques	
II.A. Materials and preparation of the cement pastes	60
A.1. Starting materials	60
A.2. Preparation and burning of clays	65
A.3. Preparation of the various pozzolanic cement	
mixtures	65
(1) Mixing with Ca(OH) ₂	65
(2) Mixing with Portland cement	66
II.B. Methods of physicochemical measurements	67
B.1. Compressive strength	67
B.2. Hydration kinetics	67
B.2.1. Chemically-combined water	68
B.2.2. Free lime determination	68
B.3. Identification of phases produced upon hydration	69
B.3.1. X-ray analysis	69
B.3.2. Scanning electron microscopy (SEM)	69

CHAPTER III:

Results and Discussion	
III.A. Physico-chemical properties of the hard lime-	
burnt clay pastes	70
III.A.1. Hydraulic reactivity of artificial pozzolanas	
made from burnt mixed clay using lime as an	
activator	70
A.I.a. Compressive strength ,	70
A.I.b. Hydration kinetics	76
A.I.b.(i) Combined water contents	76
A.I.b. (ii) Free lime contents	79
A.1.c. Phase composition of the formed hydrates	81
A.l.d. Morphology and microstructure	82
III.A.2. Hydraulic reactivity of artificial pozzolanas	
made from burnt kaolinite clay using lime as	•
an activator	83
A.2.a. Compressive strength	83
A.2.b. Hydration kinetics	83
A.2.b. (i) Combined water contents	83
A.2.b. (ii) Free lime contents	87
III.A.3. Hydraulic reactivity of artificial pozzolanas	
made from burnt montmorillonite clay using	
lime as an activator	89
A.3.a. Compressive strength	89
A.3.b. Hydration kinetics	91
A.3.b. (i) Combined water contents	91
A 3 h (ii) Free lime contents	

A.3.c. Phase composition of the formed hydrates	. 95
A.3.d. Morphology and microstructure	95
III.B. Physico-chemical properties of the hardened Portland	
cement-burnt clay pastes	. 97
III.B.1. Hydraulic reactivity of artificial pozzolanas	
made from burnt mixed clay using Portland cemen	t
as an activator	97
B.1.a. Compressive strength	. 97
B.1.b. Hydration kinetics	102
B.1.b. (i) Combined water contents	102
B.1.b. (ii) Free lime contents	107
B.1.c. Phase composition of the formed hydrates	107
B.I.d. Morphology and microstructure	109
III.B.2. Hydraulic activity of arificial pozzolanas made	
burnt kaolinite clay using Portland cement as an	
activator	111
B.2.a. Compressive strength	111
B.2.b. Hydration kinetics	116
B.2.c. Phase composition of the formed hydration	
products	120
III.B.3. Hydraulic activity of artificial pozzolanas made	
from burnt montmorillonite clay using Portland	
cement as an activator	
B.3.a. Compressive strength	122
B.3.b. Hydration kinetics	127

B.3.b (i) Chemically-combined water
contents
B.3.b. (ii) Free lime contents
B.3.c. Phase composition of the formed hydrates 13
B.3.d. Morphology and microstructure 13:
CHAPTER IV:
Summary and Conclusions
References
Arabic Summary

CHAPTER I

INTRODUCTION AND OBJECT OF INVESTIGATION

I- INTRODUCTION AND OBJECT OF INVESTIGATION

I.A- Introduction

"Pozzolana" is defined as natural or artificial solids involving constituents which react with Ca²⁺ or Ca(OH)₂ and form new binding compounds under the presence of water. "Constituents", we say, means minerals, crystals, noncrystalline materials, glasses and "artificial" means chemical or physical treatment for natural materials. Fly ash is one of possolanas in this meaning.

"Pozzolanic reactivity" is defined as index of reaction degree at ordinary temperature between pozzolanas and ${\rm Ca}^{2+}$ or ${\rm Ca(OH)}_2$ with water or between pozzolanas, water and material which produces ${\rm Ca(OH)}_2$ under the presence of water.

As the definition of "pozzolana" says, the mere physical absorption is excluded from pozzolanic reaction because this term means the formation of binding compounds by the reaction. In general the chemical reaction has absorption process as one of reaction processes and after that process forms new compounds, but we interpretate here such a physical absorption process as so-called induction period and evaluate the degree of pozzolanic reaction of this period as zero.

In the definition of "pozzolanic reactivity", properties of reaction products or aggregate system which involves raw materials and reaction products are not mentioned. The reason is that the properties of paste which involves reaction products are substantially independent from pozzolanic reactivity. For example, strength, which is one of the representative properties of paste, is strongly influenced by the kinds, shapes, sizes and distribution of hydration products and pores, has not so good correlation with the degree of reaction.

The base of pozzolanic reactivity can be defined so that the difference of free energy between source system and products system or magnitude of activation energy from source system to products system, in the reaction system of pozzolanas, Ca² [or Ca(OH)₂] and water, or pozzolanas, water and materials which form Ca(OH)₂ under the presence of water. The nature of pozzolanic reactivity is determined by the character of pozzolanas, that is, the composition and structure of pozzolanas.

In the many papers, the term of "pozzolanic activity" or "pozzolanicity" other than reactivity has been used. Some of them $^{[1,2]}$ used the pozzolanic activity for the test results of strength of pozzolanic cements. $ISO^{[3]}$ uses the "pozzolanicity" for the test results of $Ca(OH)_2$ concentration in the liquid of cement suspension. The concept of these terms is not always authorized or standardized and gives us unnecessary confusion. In this paper, the authors uses only the term of "pozzolanic reactivity", as defined at the first.

The crystalline hydrates formed in the reaction between lime

and pozzolana in the presence of water were summarized by Massazza as hexagonal calcium aluminate hydrate (C_4AH_x) , calcium carboaluminate hydrate $(C_3A.CaCO_3.H_{12})$, calcium aluminate monosulfate hydrate $(C_3A.CaSO_4.H_{12})$, calcium silicoaluminate hydrate which were identified by means of DTA, powder X-ray diffraction and electron diffraction analysis.

The kinds and compositions of produced hydrates are generally related to the character, that is, chemical composition, crystal structure of constituents of pozzolana, and the conditions of hydration. However, there are no remarkable difference between hydrates formed in paste and those of suspension hydration at later age.

Ludwig and Schwiete^[5] studied the hydration in the system $Ca(OH)_2$ and two kinds of trasses containing 50-70 % of glass phase, feldspar, quartz analcite etc. in suspension and paste. They confirmed the formation of C_4AH_{13} and C_3S_2 hydrate in the case without gypsum, and ettringite and monosulfate hydrate with gypsum.

Amicarelli, Sersale and Sabatelli^[6] studied the suspension hydration of argillified pyroclasts in lime saturated solution. They found C_2ASH_8 , C_4AH_{13} and tobermorite-like calcium silicate hydrate in clayish pozzolana containing large amount of halloysite, C_2ASH_8 and tobermorite in zeolitic pozzolana containing chabazite and $C_3A.CaCO_3.H_{12}$ and tobermorite in tuff containing leucite and halloysite at the age of 20 days. The amount of combined lime was 17 % by weight of added lime. Hydrogarnet, or C_2ASH_8 and

hydrogarnet, were formed at the later stage of 70 - 150 days, when the combined lime was from 46 to 60 %.

In the five years old paste intially containing 40 % of lime and 60 % of calcined pozzolana, Sabatelli, Sersale and Americarelli^[7] observed two typical different cases consisting of C-S-H (I) and $^{\rm C}_2{}^{\rm ASH}_8$, and C-S-H (I), $^{\rm C}_2{}^{\rm ASH}_8$, $^{\rm C}_4{}^{\rm AH}_{13}$ and $^{\rm C}_3{}^{\rm A}$, $^{\rm CaCO}_3{}^{\rm H}_{12}{}^{\rm H}_{12}{}^{\rm H}_{13}$

In the authors' study, the hydrates produced in the paste hydration of pozzolana-Ca(OH) $_2$ in W/S = 0.56 - 0.46 at 20°, 40° and 60°C using five kinds of Japanese natural pozzolanas and one kind of fly ash were classified into three cases according to pozzolanas, that is, (1) C-S-H only, (2) C-S-H, (C $_3$ A CaCO $_3$ H $_{12}$ C $_4$ AH $_{13}$)ss and hydrogarnet in later age, (3) C $_2$ ASH $_8$, hydrogarnet, and a little amount of C-S-H. The first case was Beppu white clay consisting of opal. The second case was tuff containing volcanic glass and shirasu containing volcanic glass and plagioclase. The third case was Kanto loam containing much allophane. The formation of hydrogarnet in allophane rich pozzolana was accelerated in the increased amount of Ca(OH) $_2$ and in the rise of temperature.

Regourd, Hornain and Mortureux^[8] recognized silicoaluminates of $C_3A.CS.H_{12}$ and $C_3A.3CS.H_{31}$ near C_3A grains in the hydrated paste of C_3S-C_3A and $C_3S-C_3A-CaSO_4.2H_2O$ at 28 days by SEM with energy dispersive X-ray analysis (EDX). These hydrates might be produced in the pozzolana system.

The concentration of Ca^{2+} in the liquid of the system pozzolana-

 ${\rm Ca(OH)}_2$ is kept between 2 m mole/1 and 9 m mole/1^[9]. The former corresponds to the value equilibrating to C-S-H and the latter corresponds to the value in the liquid equilibrating to ${\rm Ca(OH)}_2$ coexisting with alkalies. The molar ${\rm CaO/SiO}_2$ ratio is closely related to the concentration of ${\rm Ca}^{2+}$ in the liquid.

Drzaj, Hocevar, Slokan and Zajc^[10] studied kinetics and mechanism of reaction in the system zeolitic tuff-CaO-H₂O at 65°C using the 1:1 mixture of CaO and three kinds of tuffs and one kind of heulandite hydrate in W/S = 50/6 at 65°C. They determined the relative decrease of the minerals in reactants and the relative increase of the amounts of CSH (I), tobermorite, tetracalcium aluminate hydrate, nekoite, osumilite in products by powder X-ray diffraction referring the SEM observation. They described that the initial reaction was the diffusive dissolution of zeolite and Ca(OH)2 as it agreed with Fick's first low, and that the reaction was diffusioncontrolled topochemical reaction limited by the diffusion of Ca^{2+} and OH" through the membrane of CSH (I) gel, which formed on the surface of zeolite grain in the processes of zeolite + Ca(OH)2 + CSH (I) + tobermorite, and the interface layer between zeolite and CSH (I) gel membrane. They also pointed out that CSH (I) formed in the early stage of reaction and that tobermorite formed as final product through heterogeneous nucleation on the solid [CSH (I)] -liquid (solution) interface.

The mechanism of the hydration in the system pozzolana-