THESIS

ON RECOVERY OF URANIUM FROM EL-ERADIYA ORE CENTERAL EASTERN DESERT, EGYPT

SUBMITTED TO THE

University College for

Women Ain Shams University

(CAIRO)

BY

NAGWA H. ESMAIL

(B.Sc., M.Sc.)

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

(CHEMISTRY)

1988

RECOVERY OF URANIUM FROM EL-EREDIYA ORE, CENTERAL EASTERN DESERT, EGYPT

THESIS ADVISORS

APPROVED

Dr. Laila A. Guirguis Head of Leaching Department Nuclear Materials Corporation

Marquente A. Wasser Ery Warface S. Hegaz C Dr. Marguerite A. Wassef Professor of Inorganic Chemistry

Dr. Wafaa S. Hegazi

L.A. Guirguic

ACKNOWLEDGEMENT

The author wishes to express her deepest gratitude to Prof. Dr. Laila A. Guirguis, Head of Leaching Department Nuclear Materials Corporation, Cairo, Egypt, for suggesting the problem and contact supervision throughout this work.

Thanks are also to Prof. Dr. Marguerite A. Wassef, Professor of Inorganic Chemistry, University college for girls, Ain Shams University, Cairo for her keen interest valuable advices and continual supervision which brought this work to accomplishment.

The auther is also greatly indebted to Dr. Wafaa S. Hegazi, Assistant Professor of Inorganic and Physical Chemistry, University College for girls, Ain Shams, University, Cairo, for her helph throughout this work.

The auther wishes also to thank Prof. Dr. Essam, M. Ezzo, Head of Chemistry Department, University College for girls, Ain Shams University, for the facilities at his disposal.

The author is also grateful to Prof. Dr. Hussein A.M. Hussein, Director of the Nuclear Materials Corporation, for the facilities he offers during this work.

N.H.Esmail.

CONTENTS

	Page
ACKNOWLEDGEMENT	
SUMMARY	i
CHAPTER I INTRODUCTION	
Uranium Ores	1
Uranium chemistry	4
Uranyl sulphate	5
Aim Of The Present Work	7
Mineralogy And Chemical Analyses	
Of The Studied Sample	
I- Mineralogical Analysis	8
Infrared spectrographic investigation of the	
studied ore sample	8
Infrared Spectra Of The Constituents Of The	Ore
A-Spectra of the heavy fraction	10
1-Pitchblende, UO ₂	10
2-Uranophane $Ca(H_3O)_2(UO_2)_2(SiO_4)_2.2H_2O$	10
B-Spectra of the light fraction	11
Kaolinite, ${\rm Al_4Si_4O_{10}(OH)_8}$ and Jasper, ${\rm SiO_2}$	11
Complete chemical analysis of the studied ore)
sample	12
Chemical analysis	13
i-Preparation of column (2)	13
ii-Preparation of calut	

	Page
A- Wet Chemical Analytical Methods	
a-Determination of total iron content	14
b-Determination of calcium oxide	14
c-Determination of humidity or moisture stru	ctural
water content and carbon dioxide	15
B- Instrumental Methods Used For	
Analysis Of The Ore	
1- Spectrophotometrical Methods	16
a-Chloride determination	16
b-Fluoride determination	17
c-Determination of sulphate, SO_{4}^{-2} by turbiding	metry
method	18
d- Determination of silica, SiO ₂	19
eDetermination of alumina, Al ₂ O ₃	20
f-Determination of P ₂ O ₅	· 2 1
y-Determination of MnO	21
h-Determination of TiO ₂	22
2- Flame photometry	23
Determination of Na_2^0 and K_2^0	23
3- Fluorimetric analysis	23
Determination of uranium	23
4- X-ray fluorescence	28
CHAPTER IJ : Leaching Of Uranium From Its Ore	:S
Introduction	46

	Page
Acid leaching techniques :	51
Acid leaching of the present ore	53.
Expermints And Results	54
Leaching Experiments	54
a-Acid curing at high percentage of solids	54
l-Effect of acid amount	56
2-Effect of curing time	56
3-Effect of temperature	56
b-Agitation leaching	57
Study Of The Relevant Agitation Leaching Factors	5 9
1-Effect of sulphuric acid concentrations on	
uranium leaching efficiency	59
2-Effect of temperature on uranium leaching	
efficiency	60
3-Effect of different oxidants on uranium lead	
hing efficiency	61
4- Effect of quantity of potassium chlorate or	
uranium leaching efficiency	61
5-Effect of agitation time on uranium leaching	-
efficiency	
6-Effect of different acids on uranium leachin	
efficiency in the presence of an oxidant	
7-Effect of solid/liquid ratio on uranium lea-	
ching efficiency	
Choice Of Optimum Factors For Leaching Uranium	
From The Present Oro Comple	
Preparation of large	64
Discussion	64

	Page
CHAPTER III Uranium Recovery	
Introduction	
A-Recovery by precipitation	
B-Recovery by ion exchange	
C-Solvent extraction	
1-Distribution ratio,D	
2- Percent extraction, %E	
3-Stripping	
Completion of the analysis	
Experiments And Results	••• 90
I-Reagents Used In The Extraction Technique .	0.1
A- Extractant	
1- Potentiometric titration	
2- Infrared spectroscopy	
B- Organic solvents used as diluents	
C- Synergistic reagent	
D- Leaching solution	
II- Extraction technique	
III -Effects Of Some Variables On The Percent	
action Of Uranium From The Persent Ore	
1- Effect of aqueous/organic phase ratio	•••• 97
2- Effect of different concentrations of D ₂ El	• 97
3- Effect of pH value	1PA. 98

	page
4- Effect of different concentrations of TOPO	
in carbon tetrachloride as diluene	99
5- Effect of D ₂ EHPA/TOPO molar ratio	99
6- Effect of different diluents	100
7- Effect of temperature	101
8- Effect of shaking time	101
9- Solvent saturation	102
IV - Scrubbing	104
V -Re-extraction process (stripping)	104
<pre>l- Effect of different reagents</pre>	105
2- Effect of different hydrochloric acid con-	
centrations	105
3- Effect of aqueous / organic phase ratio	105
VI - Precipitation of uranium as yellow cake	
VII-Measurment of the IR spectrum	109
Discussion	110
References	152
Summary	

GENERAL SUMMARY

SUMMARY

RECOVERY OF URANIUM FROM EL-ERADIYA ORE CENTERAL EASTERN DESERT, EGYPT.

The subject of the present research is to study the best conditions to leach and recover uranium economically from a technological sample obtained from El-Eradiya at the Centeral Eastern Desert of Egypt. Various factors which affect the percent efficiency of uranium leaching and recovery from this ore have been studied.

This thesis is divided into three chapters. Chapter I includes the introduction, in which a survey on the distribution of the most important sources of uranium(which is the primary uranium mineral Pitchblende, UO₂) is given. Also a note on the chemical composition of the secondary uranium minerals e.g Uranophane is included. A detailed discraption of uranium ore material , subject of this research is also given and a summary of the chemistry of uranium is reviewed.

Complete chemical and mineralogical analyses were carried out to determine both uranium

and the gangue matrix. The exact amount of uranium in the ore beside the major and minor elements is a prequisite for the recovery of uranium from the ore. Results of the experimental studies of the constituents of the ore reveal that it consists of light and heavy fractions. The light fraction which is a mixture of minerals, is examined by infrared spectroscopy. The results indicate that it consists of Kaolinite, ${\rm Al}_4{\rm Si}_4{\rm O}_{14}$ (OH) $_8$, and Jasper, ${\rm SiO}_2$, whereas, the heavy fraction, containing the radioactive minerals, is found to contain Pitchblende, UO, and Uranophane, Ca(H3O)2(UO2)2(SiO4)2.2H2O. A number of analytical methods have been adopted in order to obtain the complete chemical analysis for the major, minor and the trace element constituents of the studied ore sample. Most of the constituents were determined spectrophotometrically, while Na_2O and K_2O were analyzed by flame photometry. In addition, x-ray analysis was used for the determination of a number of trace elements Such as Th, Pb , As, Mo Cu, Nb, Zn and Ba. Uranium content in the ore has been determined fluorimetrically.

Chapter II includes the study of two principal leaching techiques , namely acid curing and agitation leaching. Agitation leaching has been fully studied during the present work. A leach process depends main by on a number of factors which have been carefully studied in order to obtain the best uranium leachefficiency that matches at the same time with economic considerations. These factors are acid concentration, effect of different acids, temperature, different types of oxidants, effect of concentrations of potassium chlorate, leaching time and effect of solid/liquid ratio. From the experimental results obtained, the optimum leaching conditions to obtain complete uranium dissolution were found to be 72.12 Kg/t ore of sulphuric acid, 1 Kg/t ore of potassium chlorate as oxidant, solid/liquid ratio 1:10, agitation time is two hours and the suitable temperature is 100°C. Under such conditions the uranium concentration in the leached liquor was found to be 0.3209%, i.e the uranium leaching efficiency is 100%.

Chapter III involves the recovery of uranium by solvent extraction which was carried out in four steps. The first step, was achieved by the extraction of an inorganic compound into an organic solvent such as bis(2-ethyl hexyl) phosphoric acid, D, EHPA, or trioctyl phosphine oxide, TOPO, in carbon tetrachloride as diluent. The extraction process depends, in principle, on the formation of neutral complex which dissolves in the orgnic layer more than in the aqueous layer. In the present work, the different factors that affect the efficiency of the extraction of uranium into $\mathrm{D}_2\mathrm{EHPA}$ and TOPO in CCl, were studied in order to deduce the optimum conditions necessary for the most economical extraction. These factors include the aqueous/organic phase ratio, effect of different concentrations of DaEHPA, different pH values, effect of different concentrations of TOPO, effect of D2EHPA/TOPO molar ratio (synergistic effect), effect of different diluents, effect of temperature, effect of shaking time and solvent saturation. From the results obtained it is concluded that maximum uranium extraction from the studied leached liquor can be achieved at pH 1.7,

using 0.01M D₂EHPA/TOPO at a molar ratio of 7:3 in carbon tetrachloride as diluent. The optimum organic to aqueous phase ratio was found to be 1:1 (v/v), shaking time was found to be 5 minutes while settling time was found to be 2 seconds. Extraction was best obtained at room temperature and four stages were found sufficient for solvent saturation. The nature of the extracted species has been identified by plotting log [D_EHPA] against log D and log[TOPO] against log D, where D is the distribution ratio. . The results indicate that uranium is di-solvated with respect to D₂EHPA and monosolvated with respect to TOPO. Hence the formula of the extracting system can be represented as $U\hat{\delta}_2^+[D_2EHPA]_2$ TOPO. The value of △H -7.9 Kcal/mole was obtained from the results of studing the effect of temperature on the extraction coefficient of U(VI). It is obvious that the present value is reasonably close to the values reported in the literature 124. The concentration of uranium from the extraction process was found to be 1.2836%.

The second step "scrubbing" was carried out by washing the organic phase containing uranium for several times with a small quantity of deionized water.