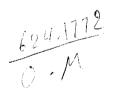
15-16-11

FIBER CONCRETE SLABS

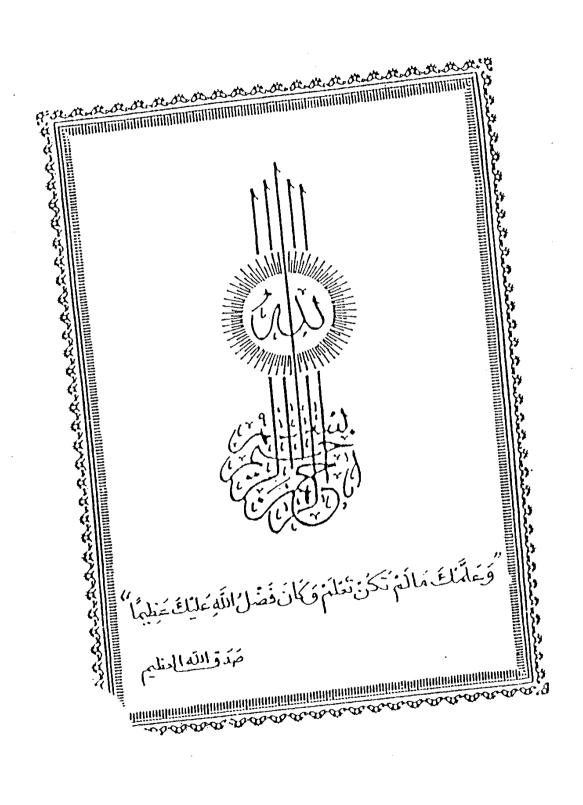
Thesis Submitted to


The Faculty of Engineering, Ain Shams University in the Partial Fulfilment of the Requirments for the Master of Science Degree in Structural Engineering

$B_{\mathbf{y}}$

Osama Mohamed Jaad El-Nesr B.Sc. (Honours) Civil Eng., 1982 Ain Shams University

Supervised by


Prof. Dr. Mohamed M. El-Hashimy

President of Ain Shams University Prof of Reinforced Concrete Structures Ain Shams University

Prof Dr. Shaken A. El-Rehairy Prof of Reinforced a acrete Structures sity

Dr. Abd-allah Abou-Taid Lecturer of Reinforced Concrete Structur 3 Ain Shams University

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude to Prof. Dr. Mohamed Mohamed El-Hashimy, President of Ain Shams University, and Professor of Reinforced Concrete, for his kind supervision and suggestions, which were of invaluable help in the course of this work.

The author is deeply indebted to Prof. Dr. Shaker Ahmed El-Behairy, Professor of Reinforced Concrete, Ain Shams University, for his constant supervision, planning, generous support and constructive criticism throughout this investigation, which made the completion of this work possible.

The author is deeply indebted to Dr. Abdallah Abu-Zaid, Lecturer of Reinforced Concrete, Ain Shams University, for his supervision, constructive directions, which made the completion of this work possible.

The author also wishes to extend his sincere thanks to the Reinforced Concrete Laboratory staff members, Ain Shams in the control of the cont

APPROVAL SHEET FIBER CONCRETE SLABS

ΒY

OSAMA MOHAMED SAAD EL-NESR

Approved by:-

Prof. Dr. Abd El-Hady Hosny.

Head of the Structural Department.

Professor of Reinforced Concrete Structures,

Ain Shams University.

Prof. Dr. M. El-Adawy Nassef. H. M. Ad. Nassef.
Professor of Reinforced Concrete Structures,

Cairo University.

Prof. Dr. Shaker A. El-Behairy.

Professor of Reinforced Concrete Structures,

Ain Shams University.

SUPERVISORS

Prof. Dr. Mohamed M. El-Hashimy

President of Ain Shams University

Professor of Reinforced Concrete Structures,

Ain Shams University

Prof. Dr. Shaker A. El-Behairy

Professor of Reinforced Concrete Structures,

Ain Shams University

Dr. Abd-allah Abou-Zaid

Lecturer of Reinforced Concrete Structures,

Ain Shams University.

TABLE OF CONTENTS

	PAGE
INTRODUCTION	I.1
CHAPTER (1)	
REVIEW OF PREVIOUS INVESTIGATIONS ABOUT FIBER	
REINFORCED CEMENT AND CONCRETE.	
1.1 Application and development of F.R.C	1.1
1.2 Fibers reinforcement	1.4
1.3 Shapes of fibers	1.4
1.4 Relation between diameter and length of fibers,	
"aspect ratio"	1.7
1.5 Ultimate moment capacity	1.17
1.5.1 General strees distribution	1.21
1.5.2 Prediction of ultimate moment capacity	
of sections without conventional	
reinforcement	1.24
1.5.3 Prediction of ultimate moment capacity	
of sections with bar reinforcement	1.31
1.6 Experimental studies on the behaviour of fiber	
reinforced concrete slabs	1.37
1.6.1 Slabs without conventional reinforcement	1.37
1.6.1.1 Introduction	1.37
1 6 1 2 Flexural behaviour	1.39

	1 45
1.6.2 Slabs with conventional reinforcement	
1.6.2.1 Introduction	
1.6.2.2 Flexural behaviour	
1.6.2.3 Punching resistance	1.53
CHAPTER (2)	
THEORETICAL APPROACH.	
2.1 Introduction	2.1
2.2 Fundamental and principle analysis for the	
tested concrete at different load stages	2.1
2.2.1 Stage (I) (non cracked, linear stage)	2.2
2.2.2 Stage (II) (ultimate stage)	
2.3 Yield line analysis	
2.3.1 Basic Principles of yield line theory	
2.3.1.1 Plastic hinges and ultimate load	
2.3.1.2 Formulation of the virtual work	
equation for reinforced concrete	
slabs	2.16
2.3.2 Application of yield line theory for	
different slabs	2.17
2.3.2.1 Squared slabs, simply supported	
on all sides and loaded by line	
load at mid span	2.17
2.3.2.2 Simply supported squared slabs	
subjected to uniformly dis-	
tributed load W/unit area	2.21
fributed road withit great	

2.4	Biline	ar finite element analysis of wire fiber	
	reinfo	orced concrete slabs 2.	. 22
		Computational system 2	
		2.4.1.1 Variational approach of finite	
		element 2	.23
		2.4.1.2 The element assemblage 2	. 27
	2.4.2	Bilinear finite element analysis of wire	
		fiber reinforced concrete slabs 2	.27
		2.4.2.1 Basic assumption 2	
		2.4.2.2 Application of tested squared	
		slabs 2	. 28
		2.4.2.3 Slab finite element idealization 2	.32
	2.4.3	System flow chart 2	
		•	
CHAI	PTER (3)	
EXPF	REIMEN'	TAL INVESTIGATION AND ANALYSIS OF MATERIAL	
USEI			
3.1	Intro	duction 3	.1
		cteristics of material used	
		re design	
		d of mixing, casting, compacting and curing 3	
		sis of specimens tests' results 3	
		Specimens testing 3	
		3.5.1.1 Compression test	
		3.5.1.2 Splitting tension test	

•
٠.
4
4
9
24
24
ļ
3
•
12

CHAPTER (5)	
ANALYSIS OF EXPERIMENTAL RESULTS.	
5.1 Introduction	5.1
5.2 Effect of wire fiber content on crack	
propagation	
5.3 Effect of wire fiber content on crack loads	
5.4 Effect of wire fiber content on crack width	
5.5 Effect of wire fiber content on Deflection	
5.6 Effect of wire fiber content on strains	5.24
CHAPTER (6)	
RESULTS OF THE THEORETICAL ANALYSIS.	
6.1 Introduction	6.1
6.2 The results of finite element analysis for	
wire fiber reinforced concrete slabs	6.2
6.2.1 Slab crack initiation	6.2
6.2.2 Slab cracking load	6.3
6.2.3 Bending moment at slab central axes	6.7
6.2.4 Torsional moment at slab edges	6.7
6.2.5 Slab deformation at cracking load	
6.2.5.1 Strain distribution on slab	
central axes	6.10
6.2.5.2 Slab central deflection	6.10
6.2.5.3 Angular deformation of slab	
along central axes	6.13

6.3 Fundamental Principle results for wire fiber
reinforced concrete 6.15
6.3.1 The position of the neutral axis 6.15
6.3.2 The flexural rigidity of slabs 6.15
6.4 The results of yield line analysis 6.15
CHAPTER (7)
COMPARISON BETWEEN THE THEORETICAL AND THE
EXPERIMENTAL RESULTS.
7.1 Introduction 7.1
7.2 Comparison of initial crack loads and ultimate
loads
7.3 Comparison of the deflection of the slab
center 7.4
7.4 Comparison of the strain distribution on slab
axes
CHAPTER (8)
CONCLUSION.
8.1 Effect of wire fiber content on concrete
properties 8.1
3.2 Effect of wire fiber content on the slabs'
haharriana

APPENDIX	(A)	
COMPUTER	PROGRAMMES	A.1
APPENDIX	(B)	
COMPUTER	RESULTS	в.
	(a)	
APPENDIX		
DEFERENCI	PQ	C.

Introduction

INTRODUCTION

The reinforcement of building materials by natural fibers had been known since the era of the ancient Egyptians. They used straw in mud bricks and residuals of linen fibers in gypsum mortar for plastering. Excluding asbestos, fibers addition to reinforced cement and concrete were subjects of many researches during the last two decades. Potentialities of the promising types of fibers led both military and civil research workers show equal interest in these researches to develop their constructions.

Fiber reinforced concrete is used in a variety of constructions such as shelters, underground vaults, marine structures, floating pantoon units and boat hulls. It is also used in machine pads and frames, piles, car park decks, and bridge decks. In the field of pavement, fiber reinforced concrete is ideal for high ways and airfields and their maintenance. It is also recommended for tunnelling, rock stabilization, industrial floors and other applications.

Addition of fiber to concrete improves the composite engineering properties such as energy absorption capacity under both static and dynamic loads, fatigue resistance and crack control. The steel fiber are the most promising for practical use. Glass, polypropyline and other fibers were not advised due to their high cost or inadequate results.

