SOME FACTORS AFFECTING NITROGEN TRANSFORMATION IN SOME SOILS

OF EGYPT USING-15N.

Ву

Yehia Galal Mohamed Galal

B.Sc. (Soil Science), 1977

SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

IN

SOIL SCIENCE

Department of Soil Science

FACULTY OF AGRICULTURE AIN SHAMS UNIVERSITY (CAIRO)

1987

APPROVAL SHEET

Name : Yehia Galal Mohamed Galal

Title: Some Factors Affecting Nitrogen Transformation in

Some Soils of Egypt Using-15N.

Approved by:

Prof. Dr.

Prof. Dr.

Prof. Dr.

Committee in Charge

Date: / /1987.

ACKNOWLEDGEMENT

The auther wishes to express his gratitude to Prof. Dr. Saad EL Sherif, Professor of Soil Science, Department of Soils, Faculty of Agric., Ain Shams University, and Prof. Dr. A. Fouad EL Kholi, Professor of Agric. Science, Department of Agric. for Soils and Water Researches, Atomic Energy Authority, for their supervision, encouragement, criticism, keen intrest in the subject, and their invaluable help during the course of this study.

Appreciation is extended to Prof. Dr. Massoud A. Massoud, Head, Dept. of Agric. for Soils and Water Researches, Atomic Energy Authority, for his fruitful guidance, support, and providing the required facilities during the course of this study.

The auther is deeply grateful to Prof. Dr. H. Faust and Dr. R. Reinhardt, Centeral Inst. for Isotope and Radiation Research, Academy of Science, Leipzig, GDR, for their help and cooperation in the Estimation of the ¹⁵N of some samples in their Lab.

Also, thanks are due to the IAEA for providing the $^{15}\mathrm{N-labelled}$ fertilizers.

Thanks are also extended to my Colleuges in the Dept. of Agric. for Soils and Water Researches, Atomic Energy Authority, for their help and cooperation.

CONTENTS

			PAGE
1.	INTRODUCTION	• • • • • • • • • • • • • • • • • • • •	1
2.	REVIEW OF LITERATURE		3
2.1.	Nitrogen transformation proce Mineralization and immobiliza		3 3
2.1.2.	Nitrification		5
2.1.3.	Biological denitrification		8
2.1.4.	Biological nitrogen fixation	• • • • • • • • • • • • • • • • • • • •	10
2.2.	Effect of organic suppliments nitrogen ratio on nitrogen tr		14
2.3.	Effect of temperature on nitr	ogen transforma-	
	tion	• • • • • • • • • • • • • • • • • • • •	17
2.4.	Effect of moisture content on	nitrogen	
	transformation	• • • • • • • • • • • • • • • • • • • •	20
2.5.	Fertilizer and manure applica	tion	24
3.	MATERIALS AND METHODS	• • • • • • • • • • • • • • • • • • • •	29
4.	RESULTS AND DISCUSSION	• • • • • • • • • • • • • • • • • • • •	37
4.1.	First Experiment		37
4.1.1.	Inorganic nitrogen		37
.1.1.1.	Ammoniacal nitrogen in alluvi		37
.1.1.2.	Ammoniacal nitrogen in sandy		41
.1.1.3.	Nitrate nitrogen in alluvial		44
4.1.2.	Nitrate nitrogen in sandy sal Organic nitrogen		48 5 2
.1.2.1.	Organic nitrogen in alluvial		52
.1.2.2.	Organic nitrogen in sandy sal		55
4.1.3.	Total nitrogen		57
.1.3.1.	Total nitrogen in alluvial so	oil	57
.1.3.2.	Total nitrogen in sandy salin		60
4.1.4.	Conclusion	• • • • • • • • • • • • • • • • • • • •	63
	Second Experiment		72
4 2 7	Bogia informations regarding	DN_techniques	70

	- 11 -	PAGE
.2.2.	Evolution of NH_4 and NO_3 -N in alluvial soil . Evolution of NH_4 and NO_3 -N in sandy saline	
1.2.4.	Conclusion ····································	
5.	SUMM ARY	-
6.	REFERENCES	. 95
	ADARTO SHMMARY	

INTRODUCTION

1. INTRODUCTION

Nitrogen occupies a unique position among the essential elements needed for plant growth. It is also considered as an important component to every life cycle. The combined nitrogen in soil is largely bound to organic matter and mineral material. In most cropping systems, the nitrogen required for crop production is derived from several sources (i) mineralization of soil organic nitrogen, (ii) decomposition and mineralization of nitrogen returned in crop residues, and (iii) nitrogen added as fertilizers. Also, biological fixation by legumes, manures, wastes, or other nitrogenous materials may be important nitrogen sources when used.

Inorganic nitrogen (NH₄-N & NO₃-N) and organic forms are the major components of nitrogen in soil. Mineral nitrogen is considered the most available form required by most agricultural crops. The subject of soil nitrogen is broad and deals with transformation of organic and inorganic forms and interrelationships that exist with the atmosphere and biosphere. The transformations includes, mineralization, nitrification of organic forms, immobilization, denitrification, and volatilization.

The nitrogen transformations are governed by a number of factors, i.e. organic residues additives, inorganic fertilizers or amendments, temperature, soil moisture content, soil pH, living microorganisms in soil.

The present study was undertaken to elucidate the effect of different organic residues additions, during the breakdown in soil, under different temperature and soil moisture content using incubation technique, on nitrogen transformations. Also, the effect of inorganic nitrogen fertilizer additions on the decomposition of organic residues and consequently mineralization had been studied using N-15 tracer technique with other chemical procedure.

REVIEW OF LITERATURE

2. REVIEW OF LITERATURE

2.1. Nitrogen transformation processes

2.1.1. Mineralization and immobilization:

Mineralization and immobilization are biochemical in nature, and both are bound to the activities of the organisms making up the heterotrophic biomass (Bartholomew, 1965; Jansson, 1971).

Nitrogen mineralization is defined as the transformation of nitrogen from organic state into the inorganic forms of NH₄ or NO₃-N. This process is performed by heterotrophic soil microorganisms that utilize nitrogenous organic substances as an energy source.

Nitrogen immobilization is defined as the transformation of inorganic nitrogen compounds, (NH₄-N, NH₃, NO₃, NO₂) into the organic state. Soil organisms assimilate inorganic nitrogen compounds and transform them into organic nitrogen constituents of their cells and tissues, the soil biomass.

The continuous transfer of mineralized-N into organic products of synthesis and of immobilized-N beck into inorganic decay products-underlying the building up and dying away of the heterotrophic biomass- can be defined as mineralization-immobilization turonver (MIT)(Knowles & Chu, 1969; Ladd & Paul, 1973; Shields et al., 1973; Westerman & Tucker, 1974; Campbell, 1978; Jansson & Persson, 1982). Changes in chemical and physical soil properties often affect microbial activity and thereby MIT and its manifestations.

- 4

Sudden changes in the chemical and physical conditions of the soil caused, for example, by wetting and drying or freezing and thawing may kill microorganisms and may be followed by sudden and temporary flushes of energy stimulating MIT (Ladd et al., 1977b; Campbell, 1978).

In this connection, a favourable soil environment is created to bring about an equilibrium between mineralization and immobilization processes. This critical balance may be upset if the C/N ratio is less than 25 when mineralization is likely to exceed immobilization leading to accumulation of ammonium and nitrate forms of nitrogen. The nitrogen will eventually be mineralized even though the organic material added has a wide C/N ratio, but a lengthy waiting period is required.

Allison and Cover (1960), Iritani and Arnold (1960), and Bartholomew (1965), they indicated that the nitrogen requirements needed by microorganisms may be influenced the nitrogen mineralization and immobilization. If the organic residues contains less nitrogen than needed by microorganisms for decomposition, inorganic nitrogen will be immobilized by the organisms. On the other hand, if the residues contains more nitrogen than needed by organisms, the excess will be mineralized and appear as inorganic nitrogen in the soil.

According to the abovementioned results, the release of nitrogen in association with the decomposition of crop residues and organic materials has important influences on N-availability in soils (Bartholomew, 1972).

Tisdale and Nelson (1975), reported that the mineralization process pass through three step-by step reactions:

aminization, ammonification, and nitrification

The first two are affected through the medium of heterotrophic microorganisms, and the third is brought about
largely by autotrophic soil bacteria. The ammonia released
from ammonification process is subject to several fates in
the soil:

It may be converted to nitrates by nitrification, may be absorbed directly by higher plants, utilized by heterotrophic organisms, and may be fixed in a biologically unavailable form in the lattice of clay minerals. Rosswall (1982) showed that the low concentration of NH₄-N in the soil is not indication of low mineralization rates, as it can indicate rapid nitrification or plant uptake.

2.1.2. Nitrification:

The decomposition of nitrogenous organic substances in soils leads to the release of NH $_3$ which equilibrates to the ionic species, NH $_4^+$, in all but highly alkaline soils. In the presence of readily available carbonaceous materials, the NH $_4^+$ is assimilated rapidly into newly forming microbial biomass. Under the more usual soil circumstances in which microbial development is limited by available carbon and energy, most of the NH $_4^+$ -N is oxidized to NO $_3^-$ -N is referred to as nitrification.

- 6 -

It is generally assumed that the organisms chiefly responsible are the chemoautotrophic (chemolithotrophic) bacteria, <u>Nitrosomonas</u> (oxidizes NH₄ ions to nitrite) and <u>Nitrobacter</u> (oxidizes NO₂ to nitrate). These two organisms, however, apparently function well only in soils with pH's nearly neutral of slightly alkaline.

The main factors which limit nitrification in the soil are substrate NH₄⁺, O₂, CO₂, pH, and temperature. In general, nitrification appears to proceed in soils under a much broader range of conditions than is predictable on the basis of the biochemistry of the process and the physiology of the autotrophic nitrifiers.

Autotrophic nitrification is a strictly aerobic process can occur only where the soil is sufficiently well aerated to allow the organisms to function and it is often inhibited at low pH values, (Campbell & Lees, 1967; Rosswal, 1982) and in alkaline soil, Nitrosomonas activity out-strips Nitrobacter, activity, and there may be an accumulation nitrite. Similar conclusion had been obtained by Anthonisen, et al., (1976) who reported that nitrite oxidation is more sensitive to low pH values than is ammonia oxidation, and this may lead to nitrite accumulation under acid conditions. But Scarsbrook, (1965), found that nitrite also accumulate at high pH in alkaline soils, especially after addition of ammonium fertilizers.

The nitrifiers obtains their ${\rm CO}_2$ for cell synthesis from the air or from any available carbonate sources present

- 7 -

(Allisson, 1973).

The temperature is one of the most favourable conditions, has been influenced nitrification process. The optimum temperature for nitrification appears to vary widely among soils. Mahendrappa et al., (1966) reported maximum nitrification rates at 20 - 25° for a group of soils from the north-western U.S., and at 30 - 40°C for soils of the south-western U.S. The value of 40°C was found to be the maximum temperature for nitrification in the midwestern U.S. soils examined by Keeny and Bremner (1967) whereas a tropical Australian soil was found by Myers (1975) to nitrify at temperature up to 60°C. Under Egyptian soils and conditions, Taha et al., (1967) reported that the maximum temperature for nitrification rate was 35°C. Too low or too high soil temperature is not conducive for the optimum functioning of nitrifiers (Subba Rao, 1977).

The nitrification process only proceeds rapidly in warm soils, and goes on very slowly when the soil temperature is below 4 to 5°C (Anderson, 1960; Anderson and Boswell, 1964; Frederick, 1965).

The number of nitrifying bacteria in soil is dependent on the levels of organic matter. Soils receiving a good amount of organic matter appears to be congenial for the growth of nitrifying bacteria (Subba Rao, 1977).

Drying a soil tends to kill off the nitrifying bacteria, and in the semi-arid tropics and subtropics there may be a considerable interval between the onset of the rains