GEOPHYSICAL INVESTIGATION OF GRAVITY AND MAGNETIC ANOMALIES OF EAST-ELOWEINAT AREA-WESTERN DESERT, A-R-E

WAFA ABD EL-AZIZ ALI SHAHTA

B. Sc.

THESIS

Submitted for the M. Sc. Degree Geology (Geophysics)

To

Department of Geology
Faculty of Science
Ain Shams University

1986

ACKNOWLEDGEMENTS

The author wishes to express her deep gratitude to Prof. D. AHMED-SABRI, Professor of Geophysics, Faculty of Science, Ain Shams University, for his faithful guidance and supervision, and also for fruitful discussions and criticism in the computation of the maps, magnetic and gravity trend analyses, depth determination for the basement surface.

I am especially grateful to Dr. MAHDY ABD EL RAHMAN, Assistant Professor of geophysics, Faculty of Science, Ain Shams University, for his encouragement and generous advice in the preparation of the thesis.

The author is deeply indebted to Mr. Mohamed Said, Institute of Geophysics and Astronomy- Helwan, for continuous help during the research.

I'm also grateful to Mr. Mohamed Hamed and Mr. ABD El Moneim Ahmed, Natural-History Dept. Faculty of Education, Ain Shams University.

I'm also grateful to Prof. Dr. M. El-Amin Bassiouni, Head of the Geology Dept. for the use of Departemental Facilities, and to Prof. Dr. Amin Dowidar, Head of the Natural-History Dept. Faculty of Education, Ain -Shams University for his support.

I am also immeasurably indebted to my parents my parents in law and my husband to whom I dedicate this work.

NOTE

The present thesis is submitted from Wafa Abdel-Aziz Ali to Ain Shams University in partial fulfilment of the requirements for the degree of Master of Science in Geophysics.

Besides the research work materialized in this thesis, the candidate has attended nine graduate courses for one year in the following topics:

- Geologic laboratory techniques.
- Geological mapping
- Geotectonics,
- Elasticity.
- Petrophysics
- Magnetic method
- Gravity method
- Filtery Technique.
- Data processing
- English language

She has successfully passed the final examinations of these courses in September 1981.

Prof.Dr. M.El-Amin Bassioni

Head, Department of Geology

CONTENTS

		Pag
LIST (of figures	i
LIST (F TABLES	iv
СНАРТІ	CR I: INTRODUCTION	1
СНАРТН	R II: QUALITATIVE INTERPRETATION OF GRAVITY	
	METHOD	9
II.1		9
11.2		11
11.3		
	II.3.1 Qualitative analysis of Bouguer	13
	gravity map	
	II.3.2 Qualitative analysis of Horizontal	13
	gradient gravity map	
		16
	dada ta tive analysis of vertical	
	gradient gravity map	20
II.4	Struclural implication of the Bouguer	
	anomaly map	21
11.5	Tectonic trend investigation by gravity	
	detailing	23
СНАРТЕР	III: QUANTITATIVE INTERPRETATION OF GRAVITY	
	ANOMALY	50
III.1		30
* * T * T	Calculation of fault parameters using	
	gravity gradient	2.5

	Pag
III.1.1)Theoretical background of the method	31
III.1.2)Parameter of the vertical fault	44
Field example	49
	43
de d	50
	50
III.2.2. Theory of the method	51
III.2.3. Determination of the dip angle of the	
dyke	54
III.2.4. Determination of density contrast	59
III.2.5. Calculation of the depth to the top	
and bottom of the dyke	61
Worked example	υ4
III.3 Spectral analysis technique of the gravity	
anomaly	66
	00
CHABTER IV: QUALITATIVE INTERPRETATION OF MAGNETIC DATA	73
IV.1. Introduction	73
IV.2. Qualitative interpretation of mgnetic maps	74
IV.2.1 Qualitative interpretation of total	• •
intensity magnetic map	76
IV.2.2 Qualitative interpretation of horizontal	• •
gradient magnetic map	80
IV.2.3 Qualitative interpretation of vertical	
gradient magnetic map	00

		Page
IV.3	Predominat tectonic trends in the study	
	area	84
CHAPTER	V: QUANTITATIVE INTERPRETATION OF MAGNETIC	
	DATA	93
	V.1 Introduction	93
	V.2 Durantny method	93
	V.3 Determination of depth to the buried	<i>5</i> 0.
	basement rocks using spectral analysis	
	techniques	lo 3
SUMMARY	AND CONCLUSION 1	.12
REFERENC:	ES 1	20
Arabic Si		20

- i -

LIST OF FIGURES

Figure No.	•	Pag
1	Location map of the studied area	2
2	Bouguer anomaly map of the studied area	
	and location of the studied profiles	10
3	The major axes of Bouguer anomaly trends	
	in the area under investigation	14
4	Horizontal gradient gravity map	17
5	Vertical gradient gravity map	18
6	Horizontal & Vertical gradient profiles in	
	EôTvôs	19
7	Faults trend by using Linsser's techniques,	
	(1967)	25 ´
8	Rose diagram of Fault trend in Bouguer	
	gravity map	26
9	Rose diagram of fault trend in horizontal	
	gradient gravity map	27
10	Rose diagram of fault trend in vertical gra-	
	dient map	28
11	Bouguer gravity profile (F.F')	32
12	Horizontal & vertical gradients of the gravity	
	field with the Analytical signal	0.0

Figure No	0.	
***		Page
13	A. Ratio profiles: (H) and (Z).	
	B. The fault Model of (F-F')profile	36
14	Ratio profile $(B_n$ and $D_n)$ due to the fault with	
	the location points (e-ando)	39
15	Bouguer anomaly along profile (D-D')	-52
16	Horizontal and vertical gradients with the	-
	analytical signal	-55
17	A-Ci is the x-coordinate of the intersection	
	point of circular point	56
	B- The ratio $\psi_{\text{contribution}}/\text{Ln contribution} = u$	
	C- Table of calculated dyke parameters	
18	Plot of $S_n(x)$ versus $Cn(x)$ for the Bouguer	
	gravity anomaly of Fig. 15	57
19	A. Amplitude function of the analytical signal	•
	B. Dyke Model of D - D' profile	60
20	Log modified amplitude spectrum along profile	60
	(A-A')	
21	Log modified amplitude spectrum along prifle	69
	(B-B')	_
22	Log modified amplilude spectrum along profile	70
	(C-C')	71
23	Total intensity magnetic anomaly map and location	
	of studied profiles	
		77

- iii -

Figure No.		Pag
24	Horizontal gradient magnetic map	81
25	Vertical gradient magnetic map	83
26	Tentative map for the major structural feature	
	of the area	85
27	Rose diagram of fault trend of the Total inte-	00
	nsity magnetic map	86
28	Uplift, major basin and grabens in the area	00
	under investigation	87
29	Durantny curve	97
30	Log modified amplitude spectrum along profile	
	(K-K')	107
31	Log modified amplitude spectrum along pro-	107
	file (L-L')	108
32	Log modified amplitude spectrum along profile	100
	(M-M)	109
33	Log modified amplitude spectrum along profile	
	(N-N)	i 173

LISTE OF TABLE

			Page
Table	(1):	The fault parameters	49
Table	(2):	Conditions at which the function $Sn(x)$	
		equals sin &	58
Table	(3):	The dyke parameters	65
Table	(4):	The results of spectral analysis of	
		the gravity anomalv	68
Table	(5):	Shows Durantny computation for profile	
		s.s	95
Table	(6):	The Durantuy method results	102
Table	(%):	The results of spectral analysis of	
		the magnetic anomaly	111

ABSTRACT

Geophysical studies are carried out on East El-Oweinat Area to delineate the subsurface structural features and tectonics.

The structural elements are determined upon analyzing the potential field data (mainly gravity and magnetic, on the base of such analysis the following results are obtained:

- a) Faults are the main controlling factor of the structural pattern of the area under investigation.
- b) The faults affecting the basement are profound and trending East-west, other trends, however, are beside the N 65°W, N 45°W and N-S trend are predominant at the shallow depths.
- c) The fault and dyke parameters are carefully calculated by using Fourier and Hilbert transform techniques.
- d) The depth to the basement intrusions and depth to the basement surface are precisely determined either by spectral analysis or analysis of magnetic profile.
- e) The depth to basement intrusions calculated from spectral analysis techniques range between 0.55 km and 0.76 km while the depth of the basement complex ranged between 0.67 km and 1.10 km.

CHAPTER I INTRODUCTION

INTRODUCTION

CHAPTER (I)

The area under investigation lies in the Western Desert of Egypt between latitudes 23° ; 00' and 23° 30' N and longitudes 30° 00' and 30° 30' E see fig (1).

This area is intensively studied by means of the previously mentioned available potential field data in an attempt to reveal the subsurface geology and to solve problems related to tectonics.

To achieve this goal the following analyses are carried out:

- a) Delineation of the subsurface structural features in the area by analyzing the measured potential field data;
- b) Calculating the fault and dike parameters using Hilbert and Fourier transform techniques;
- c) Determination of the depth to the basement intrusions and depth to the basement surface applying the following techniques:
 - 1- The method introduced by Durantuy and Kars, 1963), using the two component (Z) and (H) of the Earth's magnetic field. Further development was made by El Diasty (1969), using the total force (T).