EFFECT OF AFLATOXINS SOME HORMONAL LEVELS IN BLOOD PLASMA OF MAMMALS.

BY

KAWTHER MOHAMED SOLIMAN B. Sc. Agric. (Animal Production), 1978 Ain Shams University

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE (Animal Physiology)

IN

ANIMAL PRODUCTION Faculty of Agriculture Ain Shams University Cairo, Egypt

1988

26:20

Approved by Professor of Animal Physiology, Faculty of Agriculture. Ain Shams University. Prof. Dr. KOTBY E. A. (R. Sayed A., Ketby...)
Professor of Animal Physiology, Faculty of Agriculture, Ain Shams University. Prof. Dr. NAGUIB K. M. (Head of Mycotoxins Lab., National Research Center, Cairo . (Committee in Charge) / 1988

Date:

ACKNOWLEDGEMENTS

The author expresses her great indebtedness and sincere appreciation to Dr. M.A. El-Fouly Professor of Animal Physiology, Department of Animal production, Faculty of Agriculture, Ain Shams University for suggesting the problem, designing the work, reading the manuscript and for his valuable criticism and patient supervision.

The author also like to thank Dr. S.O. Amin, Professor of Animal Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University for her supervision, reading the manuscript, continuous encourgement and guidance.

Thanks are also due to Professor Dr. M.M. Naguib of the Food and Dairy Technology Laboratories, National Research Center, Cairo, for supervising the work, reading the thesis and for his advice and valuable instructions throughout the course of the study.

The author is also indebted to Professor Dr. Khayria

M. Naguib, Head of the Mycotoxin Laboratory, National

Research Center, Cairo for providing all necessary facilities

required for the experimental work of the research,

continuous help and encourgement.

Deep thanks are due to Dr. M.M. El-Mahdy Associate Professor of Pathology, Faculty of Vet. Med. Cairo University who made his time available for discussing the histopathological part of the present work.

RIA for progesterone hormone was done at the laboratories of Department of Radiobiology, Nuclear Research Center, Atomic Energy Establishment, Cairo. I should like therefore to express my deep gratitude to Dr. A.R. Abdelaal and his staff for their invaluable help for assaying the hormone.

Sincere gratitude and thanks are expressed to the staff of the mycotoxin laboratory, N.R.C. and the rabbit colony of Faculty of Agriculture, Ain Shams University for their enthusiastic assistance and good spirit of cooperation.

The author is greatly indebted and grateful to her bather Mr. M.S. Saleh, her husband Agric. Engineer W.A. El-Sayyad and her sons for their good understanding blessedness, love and continuous help which made the completion of this work possible.

CONTENTS

			Page
I	. IN	TRODUCTION	1
ΙI	. RE	VIEW OF LITERATURE.	
	1.	The structure and chemistry of the aflatoxin	
		and their derivatives	3
	2.	Biological effect of aflatoxins in:	
		Rats	9
		Rabbits	12
		Pigs	13
		Human	16
		Other species	17
	3.	The effect of aflatoxins on reproduction of:	
		Rats	19
		Hamsters	21.
		Chicken	22
		Rabbits	23
	4.	The histopathological changes in the organs	
		of animals treated with aflatoxin:	
		Rabbits	24
		Cats	25
		Monkeys	25
		Dogs	26
		Hamsters	26
		Rats	27

				Page
		Gui	nea-pigs	28
		Pig	S	28
		Cat	tle	29
		She	ep	30
		Tur	key	31
		Duc	kling	31
		Chi	cken	32
111.	MATE	KIAL	S AND METHODS :	
	1.	Mat	erials	
		a-	Aflatoxin B ₁	33
		b -	Experimental animals	33
			1) Reproduction	33
			- Mating	34
			- Pregnancy test	34
			2) Hutches or cages	34
			3) Feeding and watering	35
	2.	Met	hods	
		1-	Determination of AFB ₁	36
			- Preparation and determination of	
			standard solutions	36
			- Preparation of stock solution	36
		2-	Counting number of corpora lutea	37
			- Counting corpora lutea three days	
			post-coitum	37

				Page
		3-	Determination of aflatoxins in animal	
			tissues :	
			- Sample extraction	38
			- Clean up	39
			- Thin-layer chromatography (TLC Analysis)	39
			- Confirmation of aflatoxin separation-	40
		4-	Histopathologic study	40
		5~	Blood collection	40
		6-	Radioimmunoassay for progesterone	41
		7-	Statistical analyses	42
	3.	Tria	als	
		Tria	al I	43
		Tria	al II	43
		Tria	al III	43
		Tria	al IV	44
		Tria	1 V	44
IV.	RESU	LTS A	AND DISCUSSION	
		Tria	il I	46
		Tria	1 II	49
		Tria	1 111	55
		Tria	1 IV	70
		Tria	1 V	70

			Page
	1.	Some reproductive parameters of treated	
		rabbits	70
	2.	Histopathological study	74
	3.	Determination of AFB ₁ in rabbit tissues	89
V.	SUMMARY		93
VI -	REFERENC	CES	98
VTT	ADARTO O	I IMMA DV	

LIST OF TABLES

<

			Page
Table	1	The determination of the oral sublethal dose of AFB_1 (administered daily for 30 days) in	
		mature female Bouscat rabbits	47
	1-a	.Student t test for testing the significance	
		of the difference between means of the overall gain or loss in body weight (g)	
		during the course of trial (One month)	48
Table	2	The impact of treating female rabbits with	
		the sublethal dose of AFB $_1$ (50 $\mu g/kg$ body	
		weight) on conception rate, litter size and	
		average weight of born youngster	50
	2 a	Chi-square technique to test the significance	
		of the difference between means of conception	
		rate for AFB ₁ treated and control rabbits	51
	2ъ	Chi-square technique to test the significance	
		the difference between means of percentages	
		of does kindled in AFB ₁ treated and control	
		rabbits	52

			Page
Table	2c	Student t test for testing the significance	
		of the difference between means of litter	
		size for treated and non-treated rabbits	53
	2d	Student t test for testing the significance	
		of the difference between means of weight	
		of born youngster for AFB_1 treated and	
		control rabbits	54
Table	3	Some reproductive aspects of Bouscat female	
		rabbits fed daily the sublethal dose of AFB_1	
		for a period of 12 days	58
	3a	Chi-square technique to test the signifi-	
		cance of the difference between means of	
		conception rate for \ensuremath{AFB}_1 treated and control	
		rabbits	59
	3ъ	Student t test for testing the significance	
		of the difference between means of ovarian	
		weight for pregnant treated and pregnant	
		non-treated rabbits	60
	3c	Student t test for testing the significance	
		of the difference between means of ovarian	
		weight for non-pregnant treated and control	
		rabbits	61

		Page
Table 3d	Student t test for testing the significance	
	of the difference between means of number	
	of CL for pregnant treated and control	
	rabbits	62
3е	Student t test for testing the significance	
	of the difference between means of weight	
	of CL for treated and control rabbits	63
3 f	Student t test for testing the significance	
	of the difference between means of number	
	of implantation sites for pregnant treated	
	and control rabbits	64
3g	Student t test for testing the significance	
	of the difference between means of number	
	of embryos for pregnant treated and control	
	rabbits	65
3h	Student t test for testing the significance	
	of the difference between means of embryo	
	weight for treated and control rabbits	66
3i	Student t test for testing the significance	
	of the difference between means of CRL of	
	embryo for treated and control rabbits	67

		Page
Table 4	Progesterone concentration in peripheral	
	plasma of AFB $_{f 1}$ treated and control female	
	rabbits	68
4 а	Student t test for testing the significance	
	of the difference between means of	
	progesterone concentration for treated and	
	control rabbits	69
Table 5	Average number of corpora lutea counted	
	3-days $post$ - $coitum$ (P.C) for AFB ₁ treated	
	and control rabbits	71
5a	Student t test for testing the significance	
	of the difference between means of number	
	of CL for treated and control rabbits	72
Table 6	Effect of AFB ₁ treatment during different	
	stages of pregnancy on some reproductive	
	parameters of Bouscat rabbits	73

ABBREVIATIONS

m I A.F. Aflatoxin milliliter b.w body weight Nacl sodium chloride carpora lutea ng nanogram CHeL3 Chloroform $(NH_4)_2S_{04}$ Ammonium sulfate Centimeter nanometer number of CRL crown rump length Nο E.D.T.A. ethyl diamine titra P.C post coitum acetic acid E.E.C. European Economic Community P.P.b Part per billion r.p.m. revolution per minute g of gm gram hour Rate of flow K_f i.p. intraperitoneal TL C thin layer chromatography Kcal Kilo calorie ug microgram Kg Kilogram uL microliter $\mathrm{LD}_{\mathrm{SH}}$ the median lethal dose U.V. ultra violet m i. rı minutes V.V. volume/volume

mg

milligram

INTRODUCTION

INTRODUCTION

Mycotoxin is a general term used to describe compounds and/or metabolites, which are toxic and produced by molds. It may have other biological effects on living organisms. The term is derived from Greek Words "mykes" meaning fungus and "toxicum" meaning poison or toxin. Attention are directed to those toxins which may be considered to cause the greatest potential hazards to human health as food contaminants. These toxins include aflatoxins.

Aflatoxins are secondary metabolites produced by certain species of Aspergillus flavus and A. parasticus strains that produce aflatoxin are widely distributed in nature and are capable to grow on a wide variety of natural substances including different food, feedstuff and kernels causing serious economic losses. The presence of aflatoxin in animal feeds is recognised as one of the most serious health hazards. From the available literature on the effect of aflatoxins in animal, it appeared that they are potent hepatoxins and carcinogens. It has been observed in experimental animals that chronic exposure to aflatoxin (sublethal dose for long time) results initial decrease in appetite, slow growth, kidney hemorrage, bile duct proliferation, fibrosis and cirrhosis of the liver.