

Ain Shams University Faculty of Engineering Structural Engineering Department

SHRINKAGE COMPENSATING CONCRETE IN POST-TENSIONED STRUCTUERS

A Thesis submitted in partial fulfillment for the requirements of the degree of Master of Science in Structural Engineering

by

Ahmed Mohammed Ezzat Mahmoud

B.Sc Civil Engineering Helwan University, 2004

Supervised By

Dr. Ahmed Fathy Abdel-Aziz

Associate Professor Structural Engineering Department Faculty of Engineering - Ain Shams University

Dr. Mona Mostafa Abdel-Wahab

Associate Professor Structural Engineering Department Faculty of Engineering - Ain Shams University

APPROVAL SHEET

Researcher Name: Ahmed Mohammed Ezzat Mahmoud Ahmed

Associate Professor - Structural Engineering Department

Faculty of Engineering - Ain Shams University

: Master of Science in Civil Engineering (Structural)

Thesis

(Supervisor)

Thesis Title	Title : Shrinkage Compensating Concrete in Post-Tensioned	
	Structures	
Examiners Con	mmittee:	<u>Signature</u>
Prof. Dr. Gouda	Mohammed Ghanem	
*	es and Testing of Materials ng - Helwan University	
Prof. Dr. El -Say	red Abdel-Raouf Nasr	
*	es and Testing of Materials ng - Ain Shams University	
Dr. Ahmed Fath	y Abdel-aziz	
	Structural Engineering Department ng - Ain Shams University	
Dr. Mona Mosta	fa Abdel-wahab	

Researcher Data

Name : Ahmed Mohammed Ezzat Mahmoud Ahmed

Date of birth : April 19th, 1982

Place of birth : Egypt

Last academic degree : B.Sc. Degree

Field of specialization : Civil Engineering

University issued the degree : Helwan University

Date of issued degree : May 2004

Current job : Senior Construction Engineer at the Petroleum

Projects and Technical Consultations Company.

STATEMENT

This thesis is submitted as a partial fulfilment of the degree of Master of Science in

Civil Engineering (Structural), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been

submitted for a degree or a qualification at any other scientific entity.

Ahmed Mohammed Ezzat

Date :09 / 05 / 2015

ACKNOWLEDGMENT

I would like to express my sincerest appreciation to **Dr. Ahmed Fathy Abdel**

aziz for his direct supervision, continuous support, valuable guidance, and for

giving me the opportunity to investigate such an interesting point of research.

I would like to extend sincere thanks and appreciation to **Dr. Mona Mostafa**

Abdel wahab for her continuous support, valuble assistance and providing the

guidance necessary to complete this research.

I would like to thank the technical staff of the Laboratory of Properties and

Testing of Materials at Ain Shams University for their hard work during the

experimental phase of the research.

I would like to deeply thank my family, and appreciate the sincere help,

support and encouragement of my teacher, parents and wife to whom I

dedicate this thesis for without their patience and encouragement I would not

have been able to accomplish this work.

Last but not least I would like to dedicate this thesis to my son Amer and my

twin daughters Kariman and Nariman.

Ahmed Mohammed Ezzat

May 2015

I

AIN SHAMS UNIVERSITY **FACULTY OF ENGINEERING**

STRUCTURAL DEPARTMENT

Abstract of the M.Sc. Thesis Submitted by

Eng.: Ahmed Mohammed Ezzat Mahmoud Ahmed

ABSTRACT

Drying shrinkage in post-tensioned elements acts differently than in the case of

non-pre-stressed elements and this is because it is responsible for about 50% of the

total amount of long term losses in prestress forces; accordingly small drying

shrinkage strains generate large unnecessary stresses causing severe cracking

leading to the deterioration of concrete and all the other crack accompanied

problems. The use of shrinkage-compensating concrete which expands in volume

due to the presence of expansive cements or expansive agents has shown efficiency

in eliminating drying-shrinkage cracking.

In this study, shrinkage compensating concrete was produced using dead burnt lime

as an expansive agent with dosages of 4%, 8%, and 12%. The effect of combining

this expansive agent with each of shrinkage reducing admixture (SRA) and silica

fume on the expansion potential and compressive strength of concrete was

investigated. The use of shrinkage compensating concrete in post-tensioned beams

was also studied.

Twelve concrete mixes divided into three groups were used in this study. The first

group consisted of mixes incorporating CaO only. The second group consisted of

mixes incorporating CaO as well as a shrinkage reducing admixture (SRA) with a

constant dosage of 1.25% by weight of cement. The third group consisted of mixes

incorporating CaO and silica fume as a cement replacement with 7.5% by weight

of cement. The restrained expansion of shrinkage compensating concrete mixes

II

was determined by measuring the length change of concrete specimens for 200 days.

From the analysis and the discussion of test results obtained in this research, it was found that the increase in CaO content increases the expansion of concrete. The combined effect of the used shrinkage reducing admixture reduces both strength and expansion of concrete, while the use of silica fume increases the expansion of concrete incorporating 8% and 12% of CaO. Shrinkage-compensating concrete incorporating 8% CaO without any additional admixtures showed acceptable expansion within the permissible limits.

The use of dead burnt lime as an expansive agent showed to be very promising in the production of shrinkage compensating concrete to be used in post-tensioned beams.

Keywords: Dead burnt lime, Expansive agents, Length change, restrained expansion, Shrinkage, Shrinkage reducing admixtures.

TABLE OF CONTENTS

ACKNOWLEDGMENT	I
ABSTRACT	II
TABLE OF CONTENTS	IV
LIST OF TABLES	VIII
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	XII
CHAPTER 1: INTRODUCTION	1
1.1 Problem Statement	2
1.2 Research objectives and scope	3
1.3 Thesis Organization	3
CHAPTER 2: LITERATURE REVIEW	4
2.1 Introduction	5
2.2 Shrinkage of Concrete	6
2.2.1 Plastic shrinkage	7
2.2.2 Autogenous and chemical shrinkage	8
2.2.3 Drying shrinkage	9
2.2.4Carbonation shrinkage	10
2.3 Factors Influencing Shrinkage of Concrete	11
2.3.1 Influence of water content, cement type and fineness	11
2.3.2 Influence of coarse aggregate	12
2.3.2.1 Type and stiffness	12
2.3.2.2 Shape, surface texture and content	12
2.3.2.3 Moisture content	13
2.3.3 Influence of mineral admixtures	13
2.3.3.1 Silica fume	13
2.3.3.2 Fly Ash	14
2.3.4 Influence of curing	14
2.3.5 Influence of ambient conditions	15
2.3.6 Influence of specimen size	15
2.4 Methods of Controlling Shrinkage Cracking	15
2.4.1 Shrinkage reducing admixtures	16
2.4.2 Fiber reinforced concrete	18
2.4.3 Extensible concrete	18
2.5 Shrinkage Compensating Concrete	19
2.5.1 Definition	20
2.5.2 Basic concept of shrinkage compensating concrete	20

2.6 How is shrinkage Compensating Concrete Achieved?	23
2.6.1 Shrinkage compensating concrete using expansive cements	24
2.6.1.1 Types of expansive cements	24
2.6.1.2 The problem of delayed ettringite formation (DEF)	26
2.6.2 Shrinkage compensating concrete using expansive agents	28
2.6.2.1 Mechanism of expansion due to the presence of	
dead burnt lime	33
2.6.2.2 Advantages of using expansive agents in producing	
Sh.CC	34
2.6.3Combined use of shrinkage reducing admixture (SRA)	
and CaO based expansive agents.	35
2.6.4 Materials of shrinkage compensating concrete	37
2.6.4.1 Aggregates	37
2.6.4.2 Water content and w/c ratio	38
2.6.4.3 Admixtures	39
2.6.5 Mix proportions and curing	40
2.7 Properties of Shrinkage Compensating Concrete	42
2.7.1 Properties of fresh Sh.CC	42
2.7.1.1 Workability	42
2.7.1.2 Slump	43
2.7.2 Mechanical Properties of hardened Sh.cc	43
2.7.2.1 Strength	44
2.7.2.2 Durability	44
2.7.2.3 Modulus of elasticity and Poisson's ratio	45
2.7.3 Length change and deformation properties of hardened Sh.CC	45
2.7.3.1 Plastic shrinkage	45
2.7.3.2 Volume change	46
2.7.3.3 Creep	46
2.7.3.4 Coefficient of thermal expansion	46
2.8 Pre-stressed concrete	46
2.8.1 Pre-tensioned concrete	47
2.8.2 Post-tensioned concrete	48
2.8.2.1 Bonded post-tensioned concrete	48
2.8.2.2 Unbonded post-tensioned concrete	49
2.9 The Use of Shrinkage Compensating Concrete in Pre-stressed Elements	49
2.10 Additional Applications of shrinkage Compensating Concrete	54
2.10.1 Commercial and industrial floors or slabs	55
2.10.2 Parking structures	56
2.10.3 Bridge decks	57
2.10.4 Liquid containment structures	57

CHAPTER 3: EXPERIMENTAL PROGRAM	59
3.1 Introduction	60
3.2 Aim and Scope of Work	60
3.3 Research Program	60
3.4 Phase One: Studying the Effect of Using Dead Burnt Lime	
as an Expansive Agent in Shrinkage Compensating Concrete	62
3.4.1 Used Materials	
3.4.1.1 Coarse Aggregate	62
3.4.1.2 Fine Aggregate	63
3.4.1.3 Cement	63
3.4.1.4 Mixing Water	64
3.4.1.5 Dead burnt lime (calcium oxide)	64
3.4.1.6 Admixtures	66
3.4.2 Mix Proportions	68
3.4.3 Mixing, casting and curing	70
3.4.4 Testing	71
3.4.4.1 Compression test	71
3.4.4.2 Restrained expansion test	71
3.5 Phase Two: Investigating the Effect of Using Shrinkage	
Compensating Concrete in Post-Tensioned Elements	74
3.5.1 Description of test specimens	74
3.5.2 Test setup and instrumentation	79
3.5.3 Test procedure	80
CHAPTER 4: TEST RESULTS AND DISCUSSION	81
4.1 Introduction	82
4.2 Test Results of Phase One: Studying the Effect of Using Dead	82
Burnt Lime as an Expansive Agent in Shrinkage Compensating	
Concrete	
4.2.1 Compression test results	82
4.2.1.1 Effect of CaO expansive agent on compressive strength of	82
concrete	
4.2.1.2 Effect of SRA on compressive strength of concrete	84
incorporated CaO expansive agent	
4.2.1.3 Effect of silica fume on compressive strength of concrete	85
incorporated CaO expansive agent	
4.2.2 Restrained expansion test results	86
4.2.2.1 Effect of CaO expansive agent on length change of concrete	86
4.2.2.2 Effect of using SRA on length change of concrete	89
4.2.2.3 Effect of using Silica Fume on length change of concrete	94
4.3 Test Results of Phase Two: Investigating the Effect of Using	101
Shrinkage Compensating Concrete in Post-Tensioned Beams	

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	104
5.1 Introduction	105
5.2 Conclusions	105
5.3 Recommendations	107
5.4 Further Study	108
REFERENCES	109

LIST OF TABLES

Table 3.1	Sieve Analysis for the used crushed stone	62
Table 3.2	Physical Properties of the used crushed stone	63
Table 3.3	Sieve Analysis for the used sand	63
Table 3.4	Physical Properties of the used sand	63
Table 3.5	Physical and mechanical properties of the used	
	cement	64
Table 3.6	Chemical analysis of cement (% of specimen	
	dry weight)	64
Table 3.7	Chemical analysis for water	64
Table 3.8	Properties of the Superplasticizer	66
Table 3.9	Properties of the shrinkage reducing admixture	67
Table 3.10	Properties of the used silica fume	67
Table 3.11	Concrete mixes identification	69
Table 3.12	Mix proportions	69
Table 3.13	Concrete mix proportions for post-tensioned	
	elements	75

LIST OF FIGURES

Figure 2.1	Accumulation of early age and long term shrinkage	7
	with various curing coditions during the first day	
Figure 2.2	Length change as a function of time for concretes with	17
	and without SRA, wet cured during the first week	
Figure 2.3	Basic concept of shrinkage compensating concrete	21
Figure 2.4	Typical length change characteristics over time for a	23
	conventional concrete with and without SRA and a	
	shrinkage compensating concrete	
Figure 2.5	Expansive ettringite crystals	26
Figure 2.6	Gaps around aggregate due to DEF	28
Figure 2.7	Schematic trend of restrained expansion of concrete	31
	containing expansive agent based on CaO or sulfo-	
	aluminate	
Figure 2.8	Restrained expansion and compressive strength for	32
	concrete with CaO or ettringite	
Figure 2.9	Schematic view of the influence of SRA on the length	36
	change behavior of a shrinkage compensating concrete	
Figure 2.10	Effect of different methods of curing on expansion of	41
	shrinkage compensating concrete	
Figure 2.11	Length changes of different types of post-tensioned	51
	concretes	
Figure 2.12	Construction of a 60cm thick post-tensioned mat	52
Figure 2.13	Construction and contraction joints of conventional	56
	concrete vs. shrinkage compensating concrete	
Figure 2.14	Parking garage constructed with Sh.CC	57
Figure 2.15	Treatment tanks constructed with Sh.CC	58

Figure 3.1	Schematic diagram of phase one	61
Figure 3.2	Schematic diagram of phase two	62
Figure 3.3	Calcium carbonate after calcination	65
Figure 3.4	Grinding assembly	66
Figure 3.5	Specimens after casting and during curing	70
Figure 3.6	Compression testing machine and concrete test	71
	specimens	
Figure 3.7	Restrained expansion cages and test molds	72
Figure 3.8	Restrained expansion test specimens at demolding age	72
	of 6Hrs	
Figure 3.9	Micrometer used to measure Length Change	73
Figure 3.10	Specimens for restrained expansion test	73
Figure 3.11	Typical geometry and reinforcement of post tensioned	75
	beams	
Figure 3.12	Wooden formwork and steel reinforcement of beams	76
Figure 3.13	Beams after casting	77
Figure 3.14	Tensioning setup stages of assembly	78
Figure 3.15	Tensioning setup assembly and procedure	78
Figure 3.16	Test setup	79
Figure 4.1	Compressive strength of concrete mixes with CaO	83
	expansive agent	
Figure 4.2	Effect of SRA on compressive strength of concrete	84
	mixes with CaO expansive agent	
Figure 4.3	Effect of silica fume on compressive strength of	86
	concrete mixes with CaO expansive agent	
Figure 4.4	Average Length change at early ages for concrete	87
	mixes with CaO expansive agent	
Figure 4.5	Average Length change for concrete mixes with CaO	87
	expansive agent	

Figure 4.6	Average Length change for concrete mixes with CaO	89
	and SRA	
Figure 4.7	Effect of SRA on the average length change for	90
	concrete specimens with 0% CaO	
Figure 4.8	Effect of SRA on the average length change for	91
	concrete specimens with 4% CaO	
Figure 4.9	Effect of SRA on the average length change for	92
	concrete specimens with 8% CaO	
Figure 4.10	Effect of SRA on the average length change for	93
	concrete specimens with 12% CaO	
Figure 4.11	Average Length change for concrete mixes with CaO	95
	and Silica Fume	
Figure 4.12	Effect of Silica Fume on the average length change for	96
	concrete specimens with 0% CaO	
Figure 4.13	Effect of Silica Fume on the average length change for	97
	concrete specimens with 4% CaO	
Figure 4.14	Effect of Silica Fume on the average length change for	98
	concrete specimens with 8% CaO	
Figure 4.15	Effect of Silica Fume on the average length change for	99
	concrete specimens with 12% CaO	
Figure 4.16	Load deflection curves of post-tensioned beams	101
Figure 4.17	Control beam after testing (1/0)	102
Figure 4.18	Beam incorporating CaO only after testing (1/8)	102
Figure 4.19	Beam incorporating SRA only after testing (2/0)	103
Figure 4.20	Beam incorporating CaO and SRA after testing (2/8)	103