## A COMPARATIVE STUDY OF THE EFFECT OF NEOMYCIN, METRONIDAZOLE AND LACTULOSE ON COLONIC FLORA WITH SPECIAL REFERENCE TO UREA SPLITTING BACTERIA IN PATIENTS WITH LIVER CIRRHOSIS

## THESIS

Submitted in Partial Fulfilment of Master Degree in Internal Medicine

Ву

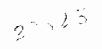
AYMAN SHAABAN MORSI M.B., B.Ch.

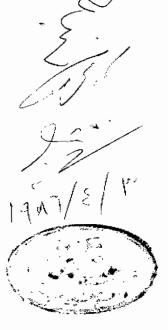
## Supervisors

Prof. Dr. SOHEIR SHEIR

Prof. of Internal Medicine

Faculty of Medicine Ain Shams University


Prof. Dr. ISLAH EL-FALAKY


Prof. of Clinical Pathology

Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1986











## TO MY PARENTS

## ACKNOWLEDGMENT

I wish to express my deepest gratitude to Prof. Dr. SOHEIR SHEIR for giving me the privilege of working under her supervision, for her encouragement, her patience and her guidance throughout the whole work.

I would like to thank Prof. Dr. ISLAH EL-FALAKY for her expert aid and advice. Her professional guidance was invaluable in clarifying many aspects of the work.

I am also grateful to Dr. LIELA ABO-EL-MAGD for her great help and guidance.

I wish to thank Mr. MAGDY RIAD for his help in the practical work and also Mrs. FATMA EL-BOUDY.

## CONTENTS

|   |                                                                      | Page |
|---|----------------------------------------------------------------------|------|
| * | INTRODUCTION                                                         | 1    |
| * | REVIEW OF LITERATURE                                                 |      |
|   | I. The normal flora of the colon                                     | 3    |
|   | II. Alteration of colonic flora in some gastro-intestinal diseases   | 18   |
|   | III. Colonic flora in liver disease                                  | 24   |
|   | IV. Effect of neomycin, metronidazole and lactulose on colonic flora | 37   |
| * | MATERIALS AND METHODS                                                | 47   |
| * | RESULTS                                                              | 52   |
| * | DISCUSSION                                                           | 74   |
| ¥ | CONCLUSIONS                                                          | 78   |
| * | RECOMMENDATIONS                                                      | 79   |
| * | SUMMARY                                                              | 80   |
| * | REFERENCES                                                           | 82   |
| * | ARABIC SUMMARY                                                       |      |

## Introduction

## INTRODUCTION

Although our knowledge of the gut flora both in items of its composition and of its function has increased dramatically in recent years, the unanswered questions still greatly outnumber those answered. Studies in this field will undoubtedly lead to a fuller understanding of the enormously complex and still mysterious microbial populations which live within our gastrointestinal tract, and will make a contribution to the understanding not only of gastroenterological but also of general medical and pharmacological problems.

The human intestinal flora is one of the most complex populations of bacteria known to exist. The caecum and colon provide suitable conditions for the establishment of the relatively stable microbial complex that characterizes the flora of the large intestine and faeces. Such large intestine's luxuriant microllora performs different functions and carries out various metabolic activities that play a significant role in the overall economy of the human body.

There is evidece of alteration of faecal flora in certain gastrointestinal disease. Also, the faecal flora is involved in the pathogenesis of a number of complications of liver cirrhosis such as portal-systemic encephalopathy and spontaneous enteric bacteraemia.

Colonic bacterial metabolism is one of the major sources of blood ammonia. Although ammonia is unlikely to be the only neurotoxin, it still has to be considered an important possible cause of portal-systemic encephalopathy in man. Other substances such as amines, mercaptans and short chain fatty

# Review of Literature

### THE NORMAL FLORA OF THE COLON

The normal colonic flora is usually inferred from the composition of the normal faecal flora, since suitable techniques for sampling various levels of the colon have yet to be developed. Data from animal studies would support the assumption that the flora does not alter during defaecation, indicating that the faecal flora adequately represents that of the recto-sigmoid (Hill and Drasar, 1975).

Moore et al (1978) have tried to validate the use of faeces as an indicator of colonic microflora by obtaining samples of colonic contents from six subjects who had died sudden violent deaths. They demonstrated that whilst there is a rapid increase in the number of bacteria between terminal ileum and colon, after this the composition of the flora and its total numbers remain constant. Therefore, the bacteria in faeces do reflect the flora of the large colon. Total cultural counts (Log<sub>10</sub> per gram dry material) were ileum 6.4-10.1; ascending colon 11.0-11.3; transverse colon 11.1-11.9; descending colon 10.9-11.7 and rectum 11.1-11.7. However, it must be noted that the faecal flora represents only the luminal flora of the recto-sigmoid region and that the mucosal flora (the bacteria growing in close association with the mucosal surface and in the villous crypts) may differ markedly from this. It is suspected that these mucosal flora is more important than the luminal flora in, for example, area metabolism (Hill et al., 1975).

Banwell et al (1981) concluded that the microbial mass is the major component in all regions of the large intestine. A figure of around 45 gram of bacterial solids has been suggested as the normal mass.

## TYPES AND DESCRIPTION OF NORMAL COLONIC FLORA

Human colonic microflora is a highly diverse community. It comprises up to 500 taxonomically distinct species whose rank order of abundance vaires among individuals (Holdeman et al., 1976). Anaerobes constitute the predominant normal flora and outnumber aerobic bacteria by at least 1000:1.

Table (1): Summarizes the different types of normal colonic flora

| Group, Genus<br>or Species     | Description                            | Remarks                                                                                                               |
|--------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Anaerobes                      |                                        |                                                                                                                       |
| - Bacteroides                  | Gran-negative rods,                    | Constitute the majority of the normal                                                                                 |
|                                | Obligate anaerobes                     | faecal flora (Jawetz et al., 1982).                                                                                   |
| . B. fragilis group            |                                        | The dominant species (Duerden, 1980).                                                                                 |
| Subspecies vulgatus            |                                        | The commonest faecal subspecies                                                                                       |
| Subspecies<br>thetaiotaomicron |                                        |                                                                                                                       |
| .B.asaccharolyticus            |                                        | Has been isolated regularly from faeces but<br>in much smaller numbers than the B. fragilis<br>group (Duerden, 1980). |
| Other Bacteroides,             |                                        | "found inconsistently                                                                                                 |
| and Fusobacterium              | Gram-negative rods, obligate anaerobes | in small numbers                                                                                                      |
|                                |                                        | in faeces".                                                                                                           |
| -Bifidobacterium               |                                        | Variable                                                                                                              |
| -Eubacterium                   |                                        | Variable                                                                                                              |

| Group, Genus<br>or species     | Description                                 | Remarks                                                                        |
|--------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|
| -Clostridium                   | Gram-positive rods,                         | Especially C. perfringens                                                      |
|                                | Obligate anaerobes                          | Not present in large numbers (Shaedler and Goldstein, 1976).                   |
| - Cocci                        |                                             |                                                                                |
| . Peptococcus                  | Gram-positive                               | Minor components of the flora (Hill and Drasar, 1975).                         |
| .Peptostreptococcus            | Gram-positive                               | as above                                                                       |
| .Veillonella                   | Gram-negative                               | as above                                                                       |
| <u>Aerobes</u>                 |                                             |                                                                                |
| -Enterobacteria                | Gram-negative rods,                         | faecal coliform flora may comprise a variety                                   |
|                                | facultative<br>anaerobes or<br>aerobes      | of serotypes (Dickinson et al., 1980).                                         |
| Escherichia coli               |                                             | The commenest (Wilson and Miles, 1975)                                         |
| Other coliforms:<br>Klebsiella |                                             | Minor components of the flora (hill and Drasar, 1975)                          |
| Proteus                        |                                             | -                                                                              |
| -Pseudomonas                   | Gram-negative rods, obligate aerobes        | Absent in more than half of normal individuals (Shaedler and Goldstein, 1976). |
| -Streptococci<br>S. víridans   | Gram-positive,<br>aerobes or<br>facultative |                                                                                |
| S. faecalis                    | anaerobes                                   | Minor components (Hill and Drasar, 1975).                                      |

| Group, Genus<br>or Species                    | Description                                             | Remarks                                                                       |
|-----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| -Lactobacillus<br>L-acidophillus              | Gram-positive, micro-<br>aerophilic or<br>anaerobic     |                                                                               |
| -Staphylococci<br>S. aureus<br>S. epidermidis | Gram-positive,<br>aerobes or facul-<br>tative anaerobes | Absent in more than half of normal individuals (Shaedler and Goldstein, 1976) |
| Others                                        |                                                         |                                                                               |
| -Candida                                      |                                                         | •                                                                             |
| -Corynebacterium                              |                                                         |                                                                               |
| -Sarcina                                      |                                                         |                                                                               |

## MUCOSAL FLORA

Although the faecal flora of humans has been the subject of much research, little is known about the composition of the flora associated with the mucous layer between the intestinal epithelium and the lumen. The mucosal flora may be of importance in maintaining the stability of the faecal flora and may have specific functions (Croucher, 1983). Results from studies on the flora of the human colon wall conflict. However, microscopic examination of specimens obtained from colonoscopic examination of the human large bowel showed that bacteria adhere to the exposed epithelial surface and to the mucous sheet (Hartley et al., 1979). Gram negative and gram positive bacteria were observed within and on the surface of the mucous

layer and within plugs of mucus at the mouths of the crypts. Other workers have observed spirochetes associated with and apparently altering the architecture of the intestinal epithelium of the human colon (Lee et al., 1971).

## FACTORS AFFECTING NORMAL COLONIC FLORA

We are confronted with the fact that a "normal" flora in one community may be abnormal in another consuming a different diet, or exposed to a different climate (Wilson and Miles, 1975), so for years there has been conjecture about the factors that control the composition of the flora in the gastrointestinal tract (Moore, 1976).

## Person to Person Variation

Each individual has a rather unique colonic flora that remains constant over long periods of time, with minor variations conditioned by, for example, frequency of bowel movement (Zubrzycki and Spaulding, 1962). Holdeman et al. (1976) showed that there is a statistically significant greater difference in the composition of the faecal flora between different individuals than among different specimens from the same individual.

## Age

During a man's prenatal life he existed in a reliably sterile environment, contact with microorganisms was excluded by his mother's resistance (Haenel, 1970). At birth the intestine contains at most a few bacteria, it is colonized rapidly, per os and to some extent per anum. Organisms were demonstrated in the meconium sometimes within 4 hours of birth, and usually within 10-17 hours; disinfection and protection of the anus delayed colonization until

after 20 hours, when food bacteria appeared in the stools (Wilson and Miles, 1975). With aging, aerobes, fungi and coliforms increase while bifidobacteria-decrease.

## Effect of Diet

Many studies have demonstrated that the faecal flora of individuals appears to be quite stable in that highly significant changes were not seen in response to diet or fiber content (Zubrzycki and Spaulding, 1962). So, it appears that the flora may depend primarily on the intestinal mucin and other secretions as its main source of nutrient (Moore et al., 1978).

However, qualitative and quantitative changes in the faecal flora can be brought about by extreme changes in the diet (Wilson and Miles, 1975).

- High carbohydrate diet favoured the growth of the obligatory anaerobic bacteria, particularly the bifidobacteria, and led to an increase in the total germ content.
- High fat diet repressed the enterococci and the bifidobacteria but encouraged proliferation of the bacteroides. In 1969 Aries et al reasoned that the bacterial species that produce carcinogens arise in response to the high-fat diet and will be absent from the low-fat, high-fiber diet.
- On a high-protein diet the flora did not differ significantly from that on a normal diet.
- On a diet rich in cellulose the total germ content of the human intestine diminished, as did likewise the frequency of the proteus, staphylococcal, clostridial and halophilic aerobic spore-bearing groups, and the yeasts (Wilson and Miles, 1975).