INVESTIGATION OF NUCLEAR STATES OF SOME NEUTRON - RICH NUCLEI

THESIS

Submitted for the Degree of

DOCTOR OF PHILOSOPY

io

NUCLEAR PHYSICS

Ву

Nadia El Sayed Walley El-Dine Fouad

Eepartment of Physics
Faculty of Women
Ain Shams University

1986

INVESTIGATION OF NUCLEAR STATES

OF SOME NEUTRON RICH NUCLEI

Supervisor

1- Dr. A. M. HASSAN

2- Dr, Aly El Naim

3- Dr. Samia Abdel Malak

Samie Abell McCall

Position

Proffessor in Reactor and

Neutron Physics Depart-

ment.

Assistant Proffessor,

Physics Department

Faculty of Women Ain-Shams UNIVERSITY.

Assistant Proffessor

Physics Department

Faculty of Women

Ain-Shams UNIVERSITY.

HEAD OF PHYSICS DEPARTMENT

ACKNOWLEDGEMENT

I would like to assert that without the research project between the physics departments in faculties of Women and Education supported by Ain Shams University, this work could not be completed.

The author wishes to express her appreciation and sincere gratitude to prof. Dr. A. M. Hassan, Reactor and Neutron Physics Department, Nuclear Research Center, Atomic Energy Authority, for his kind encouragements, and valuable supervision during this work.

Deep thanks and appreciation are also extended to Dr. A. El-Naim and Dr. S. Abdel Malak, for their guidance, continuous help, valuable discussions and suppervision during this work.

I also would like to express great gratitude to Dr. S. Darwish Physics Department, Faculty of Science Cairo University and Dr. M. Abou Leila Faculty of Education for their great help and guidance during the coarse of this work.

My sincere gratitude to Dr. A. T. Sroor, Dr. A. M. El-Shershaby and Dr. N. Abdel Basset for their guidance and help.

I would like to thank all members of the Nuclear Physics Laboratory.

Also, I wish to express my deep thanks to the Heads of the Physics Department, Faculty of Women and Education , Ain-Shams University.

CONTENTS

	rage
ACKNOWLEDGMENT	
ABSTRACT	i
INTRODUCTION	1
	_
CHAPTER I	
Nuclear Disintegration Studies of Gamma-Ray Transitions	5
I.l. Analysis of Gamma-Ray Transitions	5
1.1. Interaction of Gamma Radiation with Matter	5
1.2. Selection Rules for Gamma-Ray Transitions	6
1.3. Gamma-Decay Transition Probabilities	9
1.4. Gamma-Rays Relative Intensities	12
1.5. Total Attenuation Coefficients	14
1.6. Internal Conversion	17
1.7. Log ft Values.	19
1.2. Gamma-Gamma Coincidence Studies	. 23
1.3. Gamma-Gamma Angular Correlation Analysis	. 25
3.1. Basis of Calculation and Data Analysis of the Y-Y angul	ar
Correlation	. 25
3.2. Graphical Representation of angular Correlation	. 35
CHAPTER II	
pectrometer Arrangements and Experimental Techniques	. 37
I.l. The Gamma-Ray Singles Spectrometer	. 37
1.1. Introduction	י כי

	Page
1.2. Experimental Arrangement	39
1.3. Steps of Measuring the Gamma-Ray Singles Spectra	44
II.2. The Gamma-Gamma Coincidence Spectrometer	52
2.1. Experimental Arrangement	52
2.1. Measurement of Gamma-Gamma Coincidence spectra	58
II.3. The Gamma-Gamma Angular Correlation Spectrometer	60
. 3.1. Steps of Measuring the Gamma-Gamma Directional	
Angular Correlation Coefficient	60
CHAPTER III	
Intensity Measurement and Spins and Mixing Ratios in 153	Bu
following the β^- - Decay of $^{153}\mathrm{Sm}$	
III.l. Introduction	. 65
III.2. Source Preparation	. 66
III.3. Gamma-Ray Singles Measurements	. 67
III.4. Gamma-Ray Coincidence Measurements	. 76
4.1. The Results of γ-γ Coincidence Measurements	. 76
4.2. Data Interpretation and Discussion	. 81
III.5. Gamma-Gamma Angular Correlation Measurements	. 85
5.1. Introduction	
5.2. Results and Discussion of Y-Y Angular Correlation	
Measurements	. 85

CHAPTER IV

	Page
Gamma-Gamma Angular Correlation and Intensity *** Measure-	
ments of Gamma-Rays In the Decay of 103Ru	96
IV.1. Introduction	96
IV.2. γ-ray Singles Measurements	. 96
IV.3. $\gamma - \gamma$ Coincidence Measurements and Discussion	104
IV.4. γ - γ Angular Correlation Measurements and Discussion	111
REFERENCES	118
List of Publications	124
Arabic Summary	

* * * * * * * * *

4.

ABSTRACT

<u>;</u>

The level scheme of 153 Eu was investigated by observing the gamma-rays following the β - decay of the 47 h. 153 Sm using a high purity Ge (HPGe) detector and a Ge (Li)- Na I (T1) fast-slow coincidence spectrometer. The energies and relative intensities of about fifty six gamma-ray trnasitions were determined. Five of them at energies of 124.91, 431.65,443.24,487.75 and 623.73 kev were observed and confirmed for the first time in the present singles and/or gamma-gamma coincidence measurements. These new transitions could be fitted into a proposed level scheme of 153 Eu. The β - decay branching ratios as well as the log (ft) values were obtained.

The level scheme of 153 Eu was also investigated via the angular correlation of gamma-rays using a high purity Ge (EPGe) and a Na I (T1) detector for the first time. The angular correlation of the 510.36 - 89.37, 531.43 - 103.52, 533.17 - 103.52 and 616.28 - 103.52 kev gamma-ray cascades were measured. The spin and parity of the 719.15 kev level has been established as $\frac{1}{5}$. The spin and parity assignments to the 634.75 ($\frac{1}{5}$) and 636.61 (3/2⁺) kev levels have also been confirmed. In addition, the multipolarity and E2/M1 mixing ratios for a number of transitions in 153 Eu have been established as follows:-

$$\delta$$
 (510.36) = -0.365 $\stackrel{+}{-}$ 0.130 , δ (531.43) = 0.37 $\stackrel{+}{-}$ 0.095 - 0.085

$$\delta(533.17) = 0.135 \pm 0.09$$
 and $\delta(616.28) = 0.315 - 0.130$.

The level scheme of $^{103}{\rm Rh}$ was investigated by observing the gamma-rays following the ${\it B}$ - decay of the 39.4 day $^{103}{\rm Ru}$ using the above mentioned spectrometers Four new transitions at energies 45.25, 69.71, 256.72 and 311.71 kev were observed and confirmed in the present singles and/or gamma-gamma coincidence measurements. These new transitions were fitted into a proposed level scheme of $^{103}{\rm Rh}$. The $^{\rm a}$ -decay branching ratios as well as the log ft values were obtained. Gamma-gamma angular correlation measurements were also performed using the HPGe-Na I (T1) fast coincidence spectrometer. Correlations were deduced for the the 513.99 - 53.3 and 556.66 - 53.3 cascades.

The spin and parity assignments of the 607.21 kev level has been established as $7/2^-$. The 649.74 kev level was confirmed to have a spin and parity $7/2^+$. In addition, the multipole mixing ratios for the 513.99 and 556.66 kev gamma-ray transitions are found to be El \div 9.83 % M2 and M1 + 11.43 % E2, respectively.

1

Introduction: -

The solid state radiation detectors have achieved increasing emphasis due to their excellent energy reolution.

Many modifications have been made on the fabrication of semi-conductor detectors and its crystal shapes and sizes. Devices of sufficiently large volumes have been constructed to be used in gamma-ray spectrometers with reasonable intrinsic efficiency and with much more better resolution than that of Na I scintillation spectrometers.

The high resolution of these detectors made it possible to study the details of direct gamma-ray spectra. Although the main features of the low lying states of the 153 Eu and 103 Rh nuclei may be regarded as well established yet it is clear that several discrepencies exist concerning the presence of some energy levels and γ transitions, also the inconsistency concerning the multipolarity of some transitions, spins and parities of nuclear states led to the present investigation.

In the present investigation the gamma-ray energies and relative intensities in the decay of $^{153}\mathrm{Sm}$ to $^{153}\mathrm{Eu}$ and $^{103}\mathrm{Ru}$ to $^{103}\mathrm{Rh}$ was accomplished using Ge (Li), planer pure Ge and a coaxial pure Ge in singles gamma-ray spectrometers. Besides the different cascade relation ships were

, ix

confirmed and studied through γ - γ coincidence experiments using a Na I (Tl) Ge (Li) fast-slow coincidence spectrometer.

Angular correlation measurements have been performed using a coaxial HPGe- Na I (Tl) fast-fast coincidence spectrometer to determine the nuclear spin values of some energy levels in $^{153}{\rm Eu}$ and $^{103}{\rm Rh}$ and to obtain the mixing ratios and multipolarities of some γ -transitions in these two nuclei.

The thesis contains four chapters:- The first Chapter includes a general review on the Nuclear disintegration studies of γ -ray transitions, γ - γ coincidence studies and γ - γ angular correlation analysis.

The different instrumental techniques and steps of measurements used in the present investigation are discussed in the second chapter.

In the third chapter the level scheme of ^{153}Eu was investigated by observing the gamma-rays following the β^- -decay of the 47 h ^{153}Sm . The energies and relative intensities of about fifty six gamma-ray transitions were determined. Five of them at energies of 124.91, 431.65, 443.24, 487.75

and 623.73 kev were observed and confirmed for the first time in the present singles and/or gamma-gamma coincidence measurements. The β -decay branching ratios as well as the log (ft) values were obtained.

The level scheme of \$^{153}\$Eu was also investigated via the angular correlation of gamma-rays using a high purity Ge (HPGe) Na I (T1) spectrometer for the first time. The angular correlation of the 510.36 - 89.37, 531.43 -103.52, 533.17 - 103.52 and 616.28 - 103.52 kev gamma-ray cascades were measured. The spin and parity of the 719.15 kev level has been established as \$\frac{1}{2}\$. The spin and parity assignments to the 634.75 (\$\frac{1}{2}\$) and 636.61 (3/2*) kev levels have also been confirmed. In addition, the multipolarity and E2/M1 mixing ratios for a number of transitions in \$^{153}\$Eu have been established as follows:-

$$\delta(510.36) = -0.365 + 0.130$$
 , $\delta(531.43) = 0.37 + 0.095$ - 0.120 - 0.085. $\delta(533.17) = 0.135 \pm 0.09$, $\delta(616.28) = 0.315 + 0.120$

In Chapter four the level scheme of ^{103}Rh was investigated by observing the gamma-rays following the β -decay of the 39.4 day ^{103}Ru .

Four new transitions at energies 45.25, 69.71 , 256.72 and 311.71 key were observed and

confirmed in the present singles and/or gamma-gamma coincidence measurements. The β -decay branching ratios as well as the log ft values were obtained.

Gamma-gamma angular correlation measurements were also performed on this nucleus. Correlations were deduced for the 513.99 - 53.3 and 556.66 - 53.3 cascades. The spin and parity assignments of the 607.21 kev level has been established as 7/2. The 649.74 kev level was confirmed to have a spin and parity $7/2^+$. In addition, the multipole mixing ratios for the 513.99 and 556.66 kev gamma-ray transitions are found to be El + 9.83 % M2 and M1 + 11.43 % E2, respectively.

CHAPTER I

NUCLEAR DISINTEGRATION STUDIES
OF GAMMA_RAY TRANSITIONS