INVESTIGATIONS OF NUCLEAR PARAMETERS OF SOME RADIOACTIVE NUCLEI

Thesis

Submitted for the Degree of Doctor of Philosophy in Nuclear Physics

BY

SAMIA MOHAMED EL-BAHI

B. Sc. and M. Sc.

To

Department of Physics
University College for Girls
Ain Shams University

A. R. E.

1986

INVESTIGATIONS OF NUCLEAR PARAMETERS OF SOME RADIOACTIVE NUCLEI

Thesis Advisors

Signature

.

- Prof. Dr. A.M. Hassan
 Reactor and Neutron Physics
 Department, Nuclear Research
 Centre, Atomic Energy Authority.
- 2. Dr. Aly El Naem Assistant Professor of Physics, University College for Grils, Ain Shams University

Ales (me

3. Dr. Samia Abdel Malak.
Assistant Professor of Physics
University College for Girls,
Ain Shams University.

Same Abble Kalak

Approved

Head of Physics Department

Aknowledgements

I would like to assert that without the research prouent between the physics Departments in the Faculties of Girls and Education supported by Ain Shams University, this work could not be completed.

Deep thanks and appreciations are also extended to Dr. A.M. Hassan, Reactor and Neutron Physics Department, Nuclear Research Centre, Atomic Energy Authority, for his guidance, valuable discussion and supervision during this work.

The author would like to express her great thanks and gratitude to Dr.A. El Naem and Dr.S.Abdel Malak for their guidance, helpful discussion and for sharing the supervision of the present work.

I feel greatly indebted to Dr. M.Abou-Leila for his help and guidance.

I would like to thank also Dr.A.M.El-Shershaby and A.I.Sroor for their interest guidance.

My sincere gratitude for all members of the Nuclear Physics Laboratory.

Also, I wish to express my gratitude to the heads of the Physics Departments at the Faculties of Girls and Education in Ain Shams University.

Abstract

The level structures of $^{159}{\rm Tb}$, $^{175}{\rm Lu}$ and $^{153}{\rm Eu}$ following the 6-decay of $^{159}{\rm Gd}$, 6-decay of $^{175}{\rm Lu}$ and electron capture EC-decay of $^{153}{\rm Gd}$, respectively, have been studied utilizing a hyper pure Ge detector for E $_{\gamma}$ < 60 keV a high purity as and Ge (Li) detectors for E $_{\gamma}$ > 60 keV, as well as a Ge(Li)-NaI(II) fast-slow coincidence spectrometer. Gamma-ray energies and intensities were extracted from the gamma-ray spectra and gamma-gamma coincidence spectra.

In 159 b, twenty two gamma-ray transitions have been observed. Four of them at energies of 245 ± 0.5 , 269.5 ± 0.3 , 371.0 ± 0.5 and 249.1 ± 0.5 keV were observed for the first time belonging to the 6^- -decay of 159 Gd and confirm the excistence of two levels at 384.1 keV and 429.1 keV which were not reported before in the 6^- -decay of 159 Gd.

In 175 Lu, ten gamma-ray transitions which could be fitted into the decay scheme of 175 Yb. Four of these transitions with energies 89.4,229.5,343.4 and 432.8 keV have been observed for the first time which confirm the existence of two energy levels at 343.4 and 432.8 keV not earlier reported to be populated in the 8 -decay of 175 Yb .

In ¹⁵³Eu, energies and intensities of the gamma transitions were extracted. These measurements clrify some experimental inconsistancies in the liter-

ature. The half-life of the 103.2 keV level was determined by delayed coincidence method to be 3.85 \pm 0.08 ns.

and

Spin/parity assignments for all observed levels have been made from θ^{\pm} and EC disintegration consideration and gamma branches. The experimental level schemes is described in terms e of theortical model predictions.

Contents

		Page	
Acknowledgement			
Abstract		ií	
Introductio	ann	1	
Chapter I:	Some Aspects on Radioactivity Radiation,		
	Detection and Nuclear Models	5	
1.1:	Types of Emission of Radioactive Nuclei	5	
I.2	Radioactive Decay and Q-Value	7	
1.3:	Electromagnetic Radiation Detection	11	
I.4:	Radiation Detector and Their Characteristics	19	
	4.1. Scintillation Counters	19	
	4.2. Semiconductor Counters	23	
	4.3 Measuring System	26	
I.5:	Gamma-gamma Concidence Techniques	29	
I.6:	${\bf Half-life\ Determination\ of\ Radioactive\ Decay}$	32	
1.7;	Lifetime Measurements using Delayed		
	Coincidence Method	. 35	
1.8:	Theoretical Models	57	
I.9:	Transition Probabilities	43	
Chapter II: Experimental Arrangement and Detail Analysis			
	of Experimental Data	44	
HI.1:	Gamma-ray Spectroscopy with Germanium semi-		
	condictor	. 44	
	1.1 Gamma-ray Singles Spectrometer	. 48	
	1.2 A $ge(Li)$ -NaI(I1) gamma-gamma coincidence		
	spectrometer	54	
	1.3 Gamma-gamma Delayed coincidence Technique	9	
	using ge(Li) Detector	62	
11.2 :	Detail Analysis of Experimental Data	65	
	2.1 Detector Resolution Measurements $\ldots\ldots$	65	
	2.2 Energy Determinations	67	
	2.3 Detector Efficiency	67	
	2.4 Gamma-ray peak Areas	75	
	2 5 Coopen for Nov. Inspection and Local	7.6	

	Page
2.6 Gamma-Ray Branching ratio	77
2.7 The $ extstyle{0}^\pm$ and E.C. Branching Ratio and Log	
ft Values	. 78
Chapter III: Energy Levels of 159 To Following The B -Decay	
of ¹⁵⁹ Gd	81
III.1: Introduction	81
III.2: Experimental Techniques	82
2.1 Source Preparation	82
2.2 Instrumentation	84
III.3: Experimental Measurements and Results	85
3.1 Gamma-Ray Single Measurements	85
3.2 Gamma-gamma Coincidence Measurements	90
III.4: Level Scheme Construction and Conclusion	96
4.1 Level Scheme of 159 Tb	96
4.2 The log ft Values	. 97
4.3 Spin and Parity Assignments	98
175	
Chapter IV: The B ⁻ -Decay of ¹⁷⁵ Yb	104
IV.1: Introduction	104
IV.2: Experimental Procedure	105
2.1 Source Preperation	105
2.2 Singles gamma-Ray Spectrometer	. 106
2.3 Gamma-Gamma Coincidence Spectrometer	107
2.4 Half-Life Measurement	107
IV.3: Experimental Results	108
IV.4: Conclusion And Discussion	118
4.1 Decay Scheme of 175 Yb	118
4.2 Gamma-Ray Branching Ratios	.118
4.3 The B ⁻ -Branching Ratios and Log ft Values	121
4.4 Spin and parity Assignments	121

		Page
Chapter V :	Transitions in ¹⁵³ Eu following The Decay Of ¹⁵³ Gd	194
	Introduction	
V.2:	Experimental Procedure and Results	
	2.1 Singles	127
	2.2 Coincidences	
	2.3 Lifetimes	
V.3:	Decay Schene	
V.4:	Transition Rates	136
	4.1 Experimental Transition Probabilities	136
	4.2 Trnasition Probabilities of a Single Proto	n139
	4.3 Retardation and Enhancement Factors	139
References :		142
list of Publi	ications:	146

INTRODUCTION

The study of radioactive nuclei still offers interesting and valuable opportunities for the experimental nuclear physicit. This is true in particular, since development in solid state detectors in combination with modern nuclear electornics and small computers have made possible experimental studies of high sophistication. Although at present a vast amount of information concerning the low energy levels(E $_{\gamma}$ <1 MeV) of many nuclei is available, our knowledge on the nuclear level structure of some nuclei is far from complete.

The present thesis deals exclusively with the study of some radioactive nuclei.

The present work is concerred with the experimental studies of gamma-ray energies, transitions intensities, spins, parities and lifetimes for a number of beta-dacay radioactive nuclei. These nuclei have been investigated by observing the gamma-rays—foll-owing the beta-decay utilizing a hyper pure Ge dectetor for low energy gamma-ray single spectrum measurements (E $\gamma \leq$ 60KeV) and a high purity Ge—(HPGe) detector for high energy gamma-ray single spectrum measurements (E $\gamma \leq$ 60 KeV, as well as a Ge(Li)-\al(Tl) fast-slow concidence spectrometer.

The thesis contains five chapters,

Chapter I includes a general review on the theory of radioactivity, radiation detectors and their characteristics and the methods of analysis presently used.

Chapter I also includes a breif review on shell and collective models.

There is a wide variety of experimental methods available to the nuclear spectroscopist. In the present investigation several instrumental techniques have been employed. These will briefly be reviewed in chapter II.

In chapter III, the level scheme of 159 Tb has been investigated by observing the gamma-rays following the 6^- -decay of $19.6n^{159}$ Gd with high purity Ge detector and with a Ge(Li)-NaI(Tl) coincidence spectrometer Gamma-ray energies and relative intensities were extracted from the gamma-ray spectra and gamma-gamma coincidence spectra. Twenty two gamma-ray transitions have been observed. Four of them at energies of 246.5 ± 0.5 , 269.0 ± 0.3 , 371.0 ± 0.5 and 429.1 ± 0.5 keV were observed for the first time belonging to the 6^- -decay of 159Tb and confirm the existence of two levels at 384.1 KeV and 429.1 KeV which were not reported before in the 6^- -decay of 159Gd. Spin and parity assignments for all

observed levels have been made from beta distintegration consideration and gamma branches. The experimental level scheme of 159 Tb is compared with other level schemes of the adjacent 157 Tb and 161 Tb isotopes.

In chapter IV the 6^- - decay of 175 Yb has been studied using high purity 6e(HPGe) detector and a 6e (Li)-NaI(II) fast-slow coincidence—spectrometer. • Invest-igation of the single and coincidence spectra revealed ten gamma-ray transitions which could be fitted into a level scheme of 175 Lu. Four of these transitions with energies 89.4,229.5,343.4 and 432,8 KeV have been observed for the first—time which confirm the existence of two energy levels at 343.4 and 432.8 KeV not earlier reported to be populated in the 6^- -decay of 175 Yb. Spin and parity assignments for all observed levels are deduced from log ft values and the gamma-ray branching ratios. The experimental level scheme is described in terms of the Nilsson model and compared with the adjacent 177 Lu level scheme.

In the last Chapter V , the level scheme of $^{153}{\rm Eu}$ has been investigated by observing the gamma-rays from the electron capture decay of 241.6 d $^{153}{\rm Gd}$ with Ge(Li) detector and a Ge(Li)-NaI(Tl) coincidence spectrometer

Energies

/and intensities of the gamma-transitions were extracted from gamma-ray singles and gamma-gamma coincidence spectra. The half-life of the 103.2KeV level in 153 Eu was determined by the delayed coincidence method to be 3.85 ± 0.08 ns. Spin and parity assignments were made from log ft values and gamma-ray branching ratios.

CHAPTER I

SOME ASPECTS
ON RADIOACTIVITY,
RADIATION DETECTION
and NUCLEAR MODELS

CHAPTER I

SOME ASPECTS ON RADIOACTIVITY, RADIATION DETECTION AND NUCLEAR MODELS

The knowledge which had been acquired concerning radioactivity has been gained by studying the interaction of nuclear radiations with matter ¹⁾. Before proceedings to a discussion of the two different types of detectors used presently, consider briefly the nature of these interactions.

I.1. Types of Emission of Radioactive nuclei

The types of nuclear emissions observed from radioactive nuclides ²⁾ are alpha, beta, k-kepture and gamma rays. All types will result from the transition from a definite nuclear energy level of the parent nucleus to a definite nuclear energy level of the daughter nucleus.

1. An alpha-decay leads to an element whose nuclear charge is reduced by2 and whose atomic mass number is reduced by 4 as compared to the corresponding quantities of the parent nucleus.

$$z^{M^A} \rightarrow z^{-2^{M^{A-4}}} + z^{He^4}$$

2. \pm 8 $^{-}$ -decay results in a new duaghter nucleus whose atomic number is increased by one with no change