18708/4

The Effect of Valve Timing on the Performance and Emission of Spark Ignition Engines

A Thesis submitted to the university of Ain Shams
for the degree of
Doctor of Philosophy
By
Abdul Aziz Morgan Abdul Aziz

159 58 M

Supervisors

Professor J. Swithenbank Head of Chemical Engineering and Fuel Technology Department, The University of Sheffield, Sheffield, U.K. Professor A. El-said Gadul Mawla Head of Power and Automotive Engineering Department, The University of Ain Shams, Cairo, Egypt.

PhD Thesis

"The effect of valve timing on the performance and emission of spark ignition engines"

Supervisors

Signature

- 1- Prof. Ahmad El-Said Gad El-Mawla Head of Power and Automotive Engineering Dept., Ain Shams University.
- 2- Prof. J. Swithenbank
 Head of Chemical engineering and Fuel Technology
 Dept., Sheffield University.

Examiners

- 1- Prof. Abdul Razek Abdul Fattah Belwan University.
- 2- Dr.R.J. Saunders

 Mechanical Engineering Dept.,

 Sheffield University.

en sylven

Summary

Both experimental and theoretical work have been carried out to investigate the effect of varying valve timing on the performance of four-stroke Spark Ignition Engines. A variable camshaft was used in the experimental tests by which the inlet valve timing could be changed. During each test, measurements of engine power, speed, air and fuel mass flow rates and the exhaust gas concentrations were taken at different inlet valve timings available from the variable camshaft.

Due to the practical limitation of measuring performance for a large number of values of a large number of variables, a computer program has been developed to simulate the engine performance specially at a wide range of inlet and exhaust valve timings within a reasonable range of engine running conditions.

The first law of thermodynamics coupled with the universal equation of the ideal gases were solved step by step throughout the induction, compression and exhaust strokes. The flow through the carburetter and valves was determined according to the upstream and down stream conditions. The pressure fluctuation in the exhaust pipes was determined by considering the one dimensional unsteady flow system of equations and the solution was achieved by using the characteristic method for homentropic flow. During the combustion stage, the flame was assumed to propagate spherically with a turbulent speed which was a function of the laminar speed and the turbulent intensity. A multi-zone model was adopted through the whole combustion stage such that the cylinder contents at the end of combustion were composed of many burned elements each of these having different temperature and species concentrations.

Both experimental and theoretical results confirmed that the valve overlap period has a great influence on nitric oxide emission. The unburned hydrocarbon concentrations were found to increase and then decrease as valve overlap decreased. Carbon monoxide concentration did not change significantly as valve timings were varied, in the lean range of air-fuel ratios.

To achieve the optimum performance from a four-stroke S.I. Engine, valve timings are recommended, as a result of this study, to be varied as a function of speed rather than load. To get the maximum indicated efficiency, inlet valve opening time must be advanced as a function of speed while inlet valve closing has to be retarded. It is also recommended that exhaust valve opening time must be delayed few degrees after top dead centre position in order to minimize the pumping losses. The best range for exhaust valve opening time was found between 40° to 50° before bottom dead centre position where the blowdown losses were found to be minimum.

The benefit to be expected by implementing these recommendations, as estimated at speed of 3000 rpm and full load, are improvements in the indicated fuel consumption of 2.3%, 1.4%, 1.9% and 1.4% corresponding to the individual optimum timings of inlet valve opening, inlet valve closing, exhaust valve opening and exhaust valve closing respectively. This leads to an overall improvement of about 5-7% in the fuel consumption when all optimum valve timings are implemented. The corresponding reductions in nitric oxide mole fraction are 30.3%, 29.7%, 11.7% and 16.4%. At higher engine speeds the improvement in fuel consumption is expected to be more.

ACKNOWLEDGEMENTS

 \mathcal{D}

Countless thanks to Allah for his permanent guidance and support specially during this work.

The author would like to take this opportunity to express his thanks to all those who have given help and advice during the course of this work. In particular he would like to thank Professors J. Swithenbank and A. Gadul Mawla for their personal supervision of the project and for their helpful advice and encouragement.

Also the technical staff of the department of Chemical Engineering and Fuel Technology in Sheffield University are thanked for their constant assistance. The author would also like to thank the Egyptian government for its financial support of this work.

		Summary	
		Acknowledgement	ī.
		Table of contents	i
		Nomenclature	į:
CHAPTER	1 1.	Introduction	1
	1.1.	Valve timing previous work	2
	1.1.1.	Inlet valve opening (IVO)	4
	1.1.2.	Inlet valve closing (IVC)	5
	1.1.3.	Exhaust valve opening (EVO)	6
	1.1.4.	Exhaust valve closing (EVC)	6
	1.1.5.	Valve overlap	7
	1.1.6.	Cam advance and retard	1(
	1.2.	Previous variable camshaft design	1
	1.2.1.	Epicyclic phasing unit	1 1
	1.2.2.	Variable valve timing camshaft	12
	1.2.3.	Varimax engine camshaft	13
	1.3.	Present work	13
	1.3.1.	Experimental work	14
	1.3.1.1.	AE Variable Camshaft	14
	1.3.1.2.	Experimental procedure	15
	1.3.2.	Theoretical Work	16
CHAPTER 2	2.	Engine Test Rig	18
	2.1.	Engine	18
	2.2.	Measuring Instruments	19
	2.2.1.	Engine power	19
	2.2.2.	Engine speed	20
	2.2.3.	Air mass flow rate	20

	2.2.4.	Fuel mass flow rate	22
	2.2.5.	Inlet manifold pressure and temperature	23
	2.2.6.	Emission instruments	23
CHAPTER 3	3.	Pollutant formation in S.I. Engines	24
	3.1.	Introduction	24
	3.2.	The engine combustion process	26
	3.3.	Pollutant formation in conventional	
		S.I. Engines	30
	3.3.1.	Nitrogen oxides	30
	3.3.2.	Effect of NO_{χ} on the	
		atmosphere and environment	31
	3.3.3.	Nitric oxide formation	31
	3.3.4.	Carbon monoxide	34
	3.3.5.	Unburned hydrocarbon emissions	36
	3.3.5.1.	Bulk quench	37
	3.3.5.2.	Wall phenomena	37
	3.3.5.3.	Crevices	39
	3.3.5.4.	Effect of operating variables on	
		HC emissions	41
CHAPTER 4	т.	Theoretical basis of the present	
		computer program	43
	4.1.	Introduction	43
	4.2.	First part	45
	4.2.1.	Compression stroke	45
	4.2.2.	Equilibrium	49
	4.2.3.	NO kinetics	53
	4.2.4.	Initiation of combustion	54
	4.2.5.	Combustion stage	57

	4.2.6.	Mathematical evaluation of cylinder	
		parameters at the end of each time step	60
	4.2.6.1.	Unburned zone	60
	4.2.6.2.	Burning zone	61
	4.2.6.3.	Burned zone element	62
	4.2.7.	Expansion stage	62
	4.2.7.1.	One-zone expansion model	62
	4.2.7.2.	Multi-element expansion	63
	4.3.	Second part	63
	4.3.1.	Exhaust and suction strokes	63
	4.3.2.	Flow through the valves	64
	4.3.3.	Analysis of the back flow process	
		at part load	69
	4.3.4.	Flow through the carburettor	70
	4.3.5.	Inlet manifold	71
	4.3.6.	Analysis of flow dynamics in the	
		exhaust system	72
	4.3.6.1.	Method of characterisitics for solving	
		the flow equations	73
	4.3.6.2.	Numerical solution of the charateristic	
		equations	77
	4.3.6.3.	Riemann variables at mesh points	78
	4.3.6.4.	Representation of riemann variables at	
		boundaries	80
	4.3.6.5.	The choice of reference states	85
	4.3.6.6.	Final solution procedure in steps	86
CHAPTER 5	5.	Results and general discussion	90

	5.1.	Comparison of experimental and	
		theoretical results	90
	5.1.1.	Case I	90
	5.1.2.	Case II	93
	5.2.	Further experimental results	93
	5.3.	Further theoretical results	95
	5.3.1.	Sample of in-cylinder calculations	96
	5.3.2.	General case at constant valve timing	99
	5.3.2.1.	Effect of parameters on Nitric	
		oxide, NO, emission	100
	5.3.2.2.	Effect of parameters on indicated thermal	
		efficiency	101
	5.3.2.3.	Effect of parameters on Carbon	
		monoxide, CO, emission	102
	5.3.2.4.	Effect of parameters on residual mass	
		fraction	103
	5.3.2.5.	Effect of air humidity on Nitric oxide	
		concentration	104
	5.3.2.6.	Effect of residuals on Nitric oxide and	
		carbon monoxide emissions	104
	5.3.3.1.	Variable valve timing	105
	5.3.3.2.	Early and Late intake valve closing	110
CHAPTER 6	6.	Discusion and Conclusion	112
	6.1.	Inlet Valve Opening (IVO)	112
	6.2.1.	Inlet valve closing (IVC)	118
	6.2.2.	Early and Late Intake Vale Closing	
		(EIAC & FIAC) .	120
	6.3.	Exhaust Valve Opening (EVO)	122

6.4	 Exhaust Valve Closing (EVC) 	124
6.5	. Conclusion	126
Appendix I	Rate of formation of nitric oxides	- 130
Appendix II	Methods of calculation of gas and	
	Mixture properties	134
Appendix III	Heat transfer calculations	137
Appendix IV	Spherical flame geometry in a	
	disc-shaped combustion chamber	139
Appendix V	Derivation of cylinder dimensional	
	parameters	141
Appendix VI	Instruments specifications	142
Refferences		146
	Figures	
	Tables	
	Plates	

Nomenclature

Speed of sound
Area, non-dimensional speed of sound; a / ar
Distance from the sprk pulg position to the nearest
cylinder edge relative to the cylinder diameter
Air to fuel ratio; by mass
After top dead center position
Brake power
Before top dead center position
Compression ratio
Coefficient of discharge
Specific heat at constant pressure
Coefficient of turbulent intensity in eq. (III 41)
Specific heat at constant volume
Diameter
Valve diameter
Exhaust gas recirculation
Early intake valve closing
Early intake valve opening
Exhaust valve closing time
Exhaust valve opening time
Exhaust pipe area
Gibbs free energy
Gibbs total free energy
Convective heat transfer coefficient, specific inthalpy
Heat of formation

H Sensible enthalpy

HC Unbuned hydrocarbons

HT Total enthalpy

IMEP Indicated mean effective pressure

IVC Inlet valve closing time

IVO Inlet valve opening time

L Valve lift, exhaust pipe length

LIVC Late intake valve closing

LIVO Late intake valve opening

k Specific heat ratio

K_b Backward reaction rate

K_{eq} Equilibrium constant

K_f Forward reaction rate

M Number of hydrogen atoms in the fuel.

number of meshes, third body

 $\mathbf{m}_{\mathbf{a}}$ Air mass flow rate

m_f Fuel mass flow rate

N Engine speed, Number of carbon atoms in the fuel

p Pressure

ppm Concentration, part per milion

u_n Average piston speed

Q Quantity of heat transfer

Q.V Lower calorific value

rpm Revolution per minute

R Flame radius, specific gas constant

 R_{mol} Universal gas constant

RMR Residual gases to cylinder content mass ratio

S Entropy, Spark advance

SCL Manometer scale S.F.C Specific fuel consumption t time Temperature Flame speed, velocity Turbulent intensity Sensible internal energy, non-dimensional velocity; u/a_r U UT Total internal energy Volume VCF Viscosity correction factor Work done position coordinate Non-dimensional position coordinate; x/ L_r X

Number of oxygen atoms in the fuel, non-dimensional

<u>Subscri</u>bts

Z

a air

act actual

atm atmosphere

av average

b burned element

c cylinder

car earburettor

cr critical

d dry, down stream, stem

time; a t/L_r

d.a dry air

exhaust

eq equilibrium

exp	experimental
f	fuel
i	inlet
ig	ignition
ind	indicated
1	laminar
ញ	manifold
0	outlet, stagnation
p	piston
P	Product
r	residual, reference
R	Reactants
t	turbulant
th	theoretical, throat
u	unburned mixture, upstream
v	volumetric
w	wet
Greek	
λ, в	Riemann variables
n,	efficiency
9	throttle angle of the carburettor
μ	viscosity
6	density
₽	equivalence ratio; based on dry air

Note:

All dimensions are in S.I. units