EFFECT OF IONIZING RADIATION ON THE IMMUNE RESPONSE, AND

Odette Wahba Hindy

B. Sc. (Brochemistry) Ain Shams Univ.

THESIS

Submitted to Department of Biochemistry Faculty of Science, Ain Shams University for the Requirement of :

MASTER DEGREE

(Biochemistry)

CAIRO

1986

ار حرال

DEDICATION

TO MY BELOVED MOTHER

ACKNOWLEDGEMENT

The author wishes to express her thanks to her thesis committee members, Professor A.I.Al Gauhari, Professor M.I. Abdalla and Professor I.I. Ibrahim for their interest and constructive criticism.

The author wishes to express her appreciation to professor A.I.Al Gauhari for his close supervision and valuable criticism.

Her deep gratitude to Professor M.I. Abdalla for his guidance, continuous effort and support during the course of the study. She is also particularly indebted to Professor Abdalla for providing her with research facilities and for the many helpful comments and suggestions.

She would like to express her deepest gratitude and appreciation to Professor I.I. Ibrahim for his guidance throughout the study, his sincere help in the experimental part, statistical analysis, facilities for exposure to ionizing radiation and providing radioisotopes used and all facilities for hormonal assays.

CHAPTER	PAGE
---------	------

		B-	Effect of ionizing radiation and / or immunization on blood chemistry parameters:	118
			1- Serum total proteins	118
			2- Serum albumin	122
			3- Serum globulins	126
			4- A/G ratio	131
			5- Serum total cholesterol	136
			6- Serum transaminase (GPT) activity	140
		C-	Relationship between the various estimated	
			parameters	143
v	-	DIS	CUSSION	153
-		SUM	MARY	172
-		REF	ERENCES	176
_		וארוא	DIC CUMARY	

>_

LIST OF FIGURES

FIGURE	PAGE
1- Simplified scheme of the immune emphasize the distinction between and specific, and between cellul humoral immunity	en natural .ar and
2- Normal pathways of iodine metabo	olism 35
3- The percentage increase in 125 I-gamma globulin (ammonium sulfate the prior to immunization mean vinterval of estimation for each	e method) from value at each
4- The percentage increase in 125 I-gamma globulin (polyethylene gly from the prior to immunization reach interval of estimation for	ycol method) nean value at
5- The percentage increase in serur roxine (T ₄) from the prior to in mean value at each interval of each group	nmunization estimation
6- Comparison between serum total properties the three groups at each intervation	al of estima-
7- Comparison between serum albuming three groups at each interval or	

FIGURE PAGE

8-	Comparison between serum globulins in the three groups at each interval of estimation 130
9-	Comparison between A/G ratio in the three groups at each interval of estimation 135
10-	Comparison between serum total cholesterol in the three groups at each interval of estimation
11-	Correlation coefficient between antibody strength as determined by ¹²⁵ I-T ₄ bound to gamma globulin using ammonium sulfate and polyethylene glycol methods
12-	Correlation coefficient between antibody strength as determined by ammonium sulfate method and each of serum T_4 and T_3
13-	Correlation coefficient between antibody strength as determined by polyethylene glycol method and each of T_4 and T_3
14-	Correlation coefficient between antibody strength as determined by ammonium sulfate method and serum proteins
15-	Correlation coefficient between antibody strength as determined by polyethylene glycol method and serum proteins 150

FIGUR	E	PAGE
16-	Correlation coefficient between antibody strength as determined by ammonium sulfate method and serum cholesterol	151
17-	Correlation coefficient between antibody strength as determined by polyethylene glycol method and serum cholesterol	152

LIST OF TABLES

TABLI	E	PAGE
1 –	Mean value ± SEM of ¹²⁵ I-T ₄ bound to gamma globulin as determined by ammonium sulfate method at various time intervals after irradiation and / or immunization in control, 300 r and 600 r groups	99
2-	Summary of two-way analysis of variance for testing the significance of difference between ¹²⁵ I-T ₄ bound to gamma globulin (ammonium sulfate method) mean values in various treatment groups	100
3-	Mean value ± SEM of ¹²⁵ I-T ₄ bound to gamma globulin as determined by polyethylene glycol method at various time intervals after irradiation and / or immunization in control, 300 mand 600 r groups	
4 –	Summary of two-way analysis of variance for testing the significance of difference between \$^{125}I-T_4\$ bound to gamma globulin (polyethylene glycol method) mean values in various treatment groups	
5-	Mean value ± SEM of serum total thyroxine in cocks before and at various time intervals after irradiation and / or immunization in control 300 r and 600 r groups	100

TABLE PAGE

6-	Summary of two-way analysis of variance for testing the significance of difference between serum total thyroxine mean values in various treatment groups	110
7-	Mean value ± SEM of serum total triiodothy- ronine in cocks before and at various time intervals after irradiation and / or immuni- zation in control, 300 r and 600 r groups	113
8-	Summary of two-way analysis of variance for testing the significance of difference between serum total triiodothyronine mean values in various treatment groups	114
9-	Mean value \pm SEM of T_4/T_3 ratio in cocks before and at various time intervals after irradiation and / or immunization in control, 300 r and 600 r groups	116
10-	Summary of two-way analysis of variance for testing the significance of difference between T_4/T_3 ratio mean values in various treatment groups	117
11-	Mean value ± SEM of serum total proteins(g/dl) in cocks before and at various time intervals after irradiation and / or immunization in control, 300 r and 600 r groups	119

TABLE

PAGE

12-	Summary of two-way analysis of variance for
	testing the significance of difference between
	serum total proteins mean values in various
	treatment groups
13-	Mean value ± SEM of serum albumin (g/dl.) in
	cocks before and at various time intervals
	after irradiation and / or immunization in
	control, 300 r and 600 r groups 123
14-	Summary of two-way analysis of variance for
	testing the significance of difference between
	serum albumin mean values in various treatment
	groups
15-	Mean value ± SEM of serum globulins (g/dl.) in
	cocks before and at various time intervals
	after irradiation and / or immunization in
	control, 300 r and 600 r groups 128
16-	Summary of two-way analysis of variance for
	testing the significance of difference between
	serum globulins mean values in various treat-
	ment groups 129
17-	Mean value ± SEM of A/G ratio in cocks before
	and at various time intervals after irradiation
	and / or immunization in control, 300 r and
	600 r groups

TABLE PAGE

18-	Summary of two-way analysis of variance for testing the significance of difference between A/G ratio mean values in various treatment groups	134
19-	Mean value ± SEM of serum total cholesterol (mg/dl.) in cocks before and at various time intervals after irradiation and / or immunization in control, 300 r and 600 r groups	137
20-	Summary of two-way analysis of variance for testing the significance of difference between serum total cholesterol mean value in various treatment groups	138
21-	Mean value ± SEM of serum GPT activity (U/ml.) in cocks before and at various time intervals after irradiation and / or immunization in control, 300 r and 600 r groups	141
22-	Summary of two-way analysis of variance for testing the significance of difference between serum GPT activity mean values in various treat ment groups	

CHAPTER I

INTRODUCTION

CHAPTER I

INTRODUCTION

With the advancement of modern technology, it becomes inevitable to avoid the use of nuclear technology as a contributing factor in the progress of modern civilization. In Egypt, it is already settled for the construction of some nuclear power plants allover the country. The wide usage of nuclear technology raises the question as regards to the effect of ionizing radiation, which might result from operational or experimental faults or due to exposure of workers dealing with radioisotopes on the different biological systems.

Numerous reports have been published on the effect of wide range of ionizing radiation doses on various biological systems including the immunity system. However, to the best of our knowledge no data are available on the effect of ionizing radiation on induced thyroid immunity and the present study might be considered the first investigation in this respect. Active thyroid immunity state was produced as a result of antigenic

stimulation with thyroglobulin, a case which simulate those occurring in thyroid autoimmune state. Thyroid autoantibodies have considerably high incidence in various thyroid disorders, non thyroid diseases such as diabetes, obesity and its prevelance increases in middle and old age subjects with no apparent endocrinopathy.

Therefore the main objectives of the study were:

- The effect of two doses of ionizing radiation;300 r and 600 r; on active thyroid immunity (thyroid antibodies as a result of antigenic stimulation).
- The use of various reliable and valid radiotracer techniques for the assessment of active thyroid immunity.
- To estimate the correlation between the various techniques used for such assessment which might form a forum for an intelligent approach of interpretation of the results.
- The effect of active thyroid immunity on some blood chemistry parameters (serum proteins, SGPT and cholesterol) and to compare the results with those under the condition of exposure to ionizing radiation.