MICROBIOLOGICAL STUDIES ON β- GLUCOSIDASE FROM YEAST

Ву

MERVAT MORCY APPAS EL-GENDY

B.Sc. Agric. Microbiology, Fac. Agric., Ain Shams University (1992)

631.46 M. M

Thesis submitted in partial fulfif

Of

the requirements for the dept

MASTER OF SCIENCE

In

Agriculture (Agricultural Microbiology)

96647

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

1999

APPROVAL SHEET

MICROBIOLOGICAL STUDIES ON B-GLUCOSIDASE FROM YEAST

BY

MERVAT MORCY APPAS EL-GENDY

B.Sc. Agric. (Microbiology,) Fac. Agric., Ain Shams University (1992)

This thesis for M.Sc.degree has been approved by:

Prof. Dr.Ahmed I. El-Diwany

Prof. of Microbiology, National Research Center.

Prof. Dr. Abd El- Mohsen A. Refaat

Prof. of Agriculture Microbiology, Fac. of Agric.

Ain Shams University.

Prof. Dr. Fatma R. R. Nassar

Prof. of Agriculture Microbiology, Fac. of Agric.,

Fatura Varias

Ain Shams University (supervisor).

Date of Examination / / 1999

MICROBIOLOGICAL STUDIES ON β - GLUCOSIDASE FROM YEAST

Ву

MERVAT MORCY APPAS EL-GENDY

B.Sc. Agric. Microbiology, Fac. Agric., Ain Shams University (1992)

Under the Supervision of:

Prof. Dr. Fatma R. Nassar
Prof. of Agric. Microbiol., Fac. of Agric., Ain Shams University.

Prof. Dr. Mohsen H. Selim
Prof. of Microbial Chemistry, National Research Center

ABSTRACT

Mervat Morcy Appas El-Gendy. Microbiological studies on β-glucosidase from yeast. Unpubl-ished M.Sc., University of Ain Shams, Faculty of Agriculture, Department of Agricultural Microbiology, 1999.

β-glucosidase production by 150 isolates of yeasts isolated from Egyptian soils were qualitatively examined. Quantitative assay test showed that isolates No. 2, 4, 5, 10 and 53 were the most active producers. These five isolates were characterized and identified as Kluyveromyces drosophilarum, Kluyveromyces lactis, Pichia nakazawae, Debaryomyces yarrowii and Hansenula anomala respectively.

Studies on the nature of their β -glucosidase production clearly indicated that the enzyme was constitutively synthesized by these five strains. In addition, factors affecting their β -glucosidase activity were also determined.

For the most active strain (i.e.; Kluyveromyces lactis) which has been chosen for further studies, the growth conditions and nutritional requirements required for its maximum β -glucosidase production were determined.

In addition, chemical and physical treatments for releasing active enzyme in a good yield from yeast cells were carried out, because no activity of β -glucosidase enzyme was detected in its culture fluid.

On the other hand, the enzyme was purified by ammonium sulphate precipitation followed by gel filtration using sephadex G-100 filtration. Furthermore, some physiochemical and biochemical properties of the purified enzyme were investigated.

Key words: Yeasts, β-glucosidase, Kluyveromyces lactis.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

The author is indebted to **Prof. Dr. E.M. Ramadan**, Prof. of Agric. Microbiology, Fac. of Agric., Ain Shams University, for his supervision, and valuable help through the work of this thesis.

The author wishes to express her thanks to **Prof. Dr. Fatma, R. Nassar,** Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams University, for her supervision, encouragement, helpful advice and writing through the whole work of the thesis.

In have a great pleasure to thank **Prof. Dr. Mohsen H.** Selim, Prof. of Microbial Chemistry, National Research Centre, for suggesting the point and supervising the work, his continuous guidance, encouragement, helpful assistance and his unlimited help in writing the thesis.

Thanks also to **Dr. Moataza M. Saad,** Researcher of Microbial Chemistry, National Research Centre, for her great helps during the purification studies.

The author would like to express her great appreciation to all staff members, the colleagues and workers in the Department of Microbial Chemistry, NRC.

Thanks are also to all staff members in the Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University.

Finally my deepest gratitude for my family for their continuous help and encouragement through this work.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURES	3
I. Yeast β-glucosidase	3
II. Fungal β-glucosidase	12
MATERIALS AND METHODS	23
Materials	23
I. Microorganisms	23
II. Media	23
1. Malt Yeast extract Peptone agar (MYP).	23
2. Yeast Nitrogen Base (YNB)	23
3. Yeast Carbon Base (YCB)	24
4. Sporulation media	24
a. Malt agar medium	24
b. Malt Yeast Peptone agar (MYP)	24
c. McClary acetate agar medium	25
5. Salt Yeast extract (SY)	25
6. Szapex Dox	25
III. Buffers	25
IV. Reagents	26
1. p-Nitrophenyl β-D-glucopyranoside (β- PNPG)	26
2. Folin reagent	26
3. Column chromatography adsorbance	26
Methods	26
I. Isolation of β-glucosidase producing yeasts	26
II. Screening for β-glucosidase producing yeast	
isolates	27
1. Qualitative method	27
2 Quantitative assay test	27

	Page
III. Identification of yeast isolates	28
1. Microscopical appearance	28
2. Sexual reproduction	28
3. Physiological features	28
IV. Enzyme release treatments	29
1. Chemical treatments	29
2. Physical treatments	29
a. Freezing and thawing treatment	29
b. Homogenization treatment	29
V. Nature of β-glucosidase production	30
1. β-glucosidase assay method	30
VI. Determination of growth density	31
VII. Protein determination	31
VIII. Partial purification of β-glucosidase	31
1. Nucleic acid precipitation	31
2. Fractionation by salting out with ammonium	
sulphate	31
3. Purification of β-glucosidase on sephadex	
G-100	32
RESULTS AND DISCUSSION	33
I. Qualitative assay test	33
II. Quantitative assay test	33
III. Identification studies	36
IV. Nature of β-glucosidase production	44
V. Some properties of the crude β-glucosidase	
produced by the identified yeast strains	46
1. Effect of pHs on the crude β-glucosidase	
activity	46
2. Effect of temperature on the crude β -	
glucosidase activity	52
3. Effect of reaction period on the crude β-	

	Page
VI. Some factors affecting β-glucosidase production	
by Kluyveromyces lactis	57
1. Effect of temperature on growth and β -	
glucosidase production	57
2. Type of fermentation media	57
3. Effect of inoculum on the growth and β -	
glucosidase production	60
4. Effect of medium volume ratio on growth	
and β-glucosidase production	63
5. Effect of initial pH on growth and β -	
glucosidase production	65
6. Effect of different carbon sources on β -	
glucosidase production	70
7. Effect of nitrogen sources on β-glucosidase	
production	73
8. Effect of some amino acids on growth and	
β-glucosidase production	77
 Effect of vitamins on β-glucosidase produ- 	0.5
ction	85
VII. Enzyme release treatment	
VIII. Purification studies on Kluyveromyces lactis β-	. 100
glucosidase	100
1. Effect of temperature on β-glucosidase	105
activity and stability	105
2. Effect of incubation reaction period on β -	110
glucosidase activity	
3. Effect of various pH values on the enzyme	
activity and stability	
4. Substrate specificity	
5. Effect of metal ions and some chelating agent	
on β-glucosidase activity	. 122
REFERENCES	
ADADIC SUMMADV	

LIST OF TABLES

No.	Page
1.Qualitative assay test of β-glucosidase produced by 150 yeast isolates	34
2. Growth and β-glucosidase production of the selected isolates during 3 days of shaking	37
3. Assimilation of carbon compounds (aerobic utilization) and growth of yeast isolates on different carbon compounds	41
4. Assimilation of nitrogen compounds and growth of yeast isolates on different nitrogen compounds	42
5. Growth at elivated temperature on YNB glucose agar slants	42
6. Growth on YNB supplemented with higher concentration of glucose	42
7. Fermentation of different carbon compounds (anaerobic utilization and growth of yeast isolates on differnt carbon compounds)	43
8. Growth and β-glucosidase production of the 5 yeast isolates cultivated on YNB supplemented with different carbon sources after 24 hr of shaking	
at 30°C	45
9. Effect of different pH values on cude β-gluco- sidase activity of of the 5 yeast isolates	47
10. Effect of buffer molarities on crude β-gluco- sidase activity of the 5 yeast isolates	50
11. Effect of assay temperatures on crude β-gluco-sidase activity of the representative isolates	53