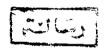
ADSORPTION OF SOME ORGANIC MOLECULES ON CLAYS AND SOILS


BY

NAFOUSSA ISMAIL MOHAMED ISMAIL

B. Sc. (Soil Sci.) Ain Shams University (1969) M. Sc. (Soil Sci.) Ain Shams University (1978)

THESIS

Submitted in Partial Fulfilment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCE

SOILS

Graduate Division of Ain Shams University

1986

APPROVAL SHEET

Name : NAFCUSSA ISMAIL MOHAMED ISMAIL

Title : Adsorption of some organic molecules on clays and

scils.

THESIS

SUBMITTED IN PARTIAL PULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

- n

SOIL SCIENCE

This Thesis has been Approved by:

1986

29/11/1986

ACKNOWLEDGEMENT

The authoress wishes to express her gratitude and sincere appreciation for Prof. Dr. Hassan Hamdi, Professor of Soil Science, Soils Dept. Fac. Agric., Ain Shams Univ., Prof. Dr. Farida Rabie, Professor of Mineralogy at the same Department and Prof. Dr. Tawakul Rezk, Professor of Agronomy, Agron. Dep. Fac. Agric., Ain Shams Univ. for planning this work, faithful advice and constructive criticism. Thanks are extended to Dr. Abu Bakr El-Seddik Abdallah at Soil & Water Research Institute for his continuous help throughout the preparation of this thesis. I am really indebted to members of the aforementioned institute for affording all the facilities needed to carry out this work.

CONTENTS

		Page
1.	INTRODUCTION	-
2.	REVIEW OF LITERATURE	3
	1. Adsorption of herbicides on soils and clays	3
	2. Adsorption of paraquat and diquat on soils and	
	clays	7
	3. Desorption of paraguat and diquat	12
	4. Adsorption of atrazine by soils and clays	13
	5. Desorption of atrazine	14
3.	MATERIALS AND METHODS	20
	1. Materials	20
	2. Methods of analysis	22
	1. Physical and chemical properties of soils	22
	2. Mineralogical analysis	22
	3. Amorphous inorganic materials	23
	3. Experimental work	24
	1. Adsorption and desorption of paraquat by soils	
	and clays	24
	2. Surface area estimation	26
	3. Adsorption and desorption of atrazine by soils	
	& clays	26
1.	RUSULES AND DISCUSSION	28
	1. General characteristics of the adsorbents soils	28
	2. Mineralogical composition of the clays	26
	3. Amorphous materials in the studied soils	
		J=

				Page		
	1	7. م	loomption and described to			
	ᅻ.		sorption and desorption of paraguat by			
			ays and soils	36		
		1.	Adsorption of paraguat by clay minerals	36		
		2.	Description of paraquat from clay minerals	47		
		3.	Adsorption of paraquat by the alluvial soils.	48		
		4.	Desorption of paraguat from the alluvial soils.	56		
		5.	Adsorption of paraquat by the calcareous soils.	57		
		6.	desorption of paraquat from the calcareous			
			soils	64		
	5.	Ad	sorption and descrption of atrazine by clay			
		mi	nerals and soils	65		
		1.	Adsorption and descrption of atrazine by clay			
			minerals	65		
		2.	Adsorption and descrption of atrazine by soils.	78		
	6.	Ef	fect of paraguat on some properties of soils and			
			ays	14.7		
			Caulon exchange capacity			
				88		
			Surface area	3¢		
		٠.	d-spacing of different clay minerals and soil clays	•		
		4.	Infrared spectroscopic study of adsorbed her-	9 1		
			bicides	10 k		
5.	SUM	MAF	R¥			
· .	REFERENCES					
	AKA	вIC	SUMMARY			

INTRODUCTION

Adsorption is the phenomenon of binding molecules or ions on the surface of solids. Such phenomenon may cause deviations of the properties of both adsorbate and adsorbent. Studying the adsorption of organic molecules has drawn the attention of many investigators because of the widely usage of organic compounds in our practical life. Organic hebricides give an evident example for such argument; they represent one of the broad categories of pesticides used for weed control.

Applied soil herbicides are known to be abscribed by plant roots as solutes with soil water. Soil constituents modify the degree of adsorption and hence they govern the available lity and/or activity of herbicides to plant.

As the application of herbicides is becoming increasingly practised in agriculture, it seems a fruitful choice to study the adsorption of some organic herbicides by clays and soils. Such study may shed light on the behaviour of some of commonly used herbicides in the soils of Egypt, namely paraquat and atrazine. Paraquat is non selective herbicide, it is used as herbicide for non crop usage, mainly for orchard weed control, as a pre-emergence herbic de and as a named part of regence herbicide. While atrazine is a widely used selective herbicide for control of weeds grown in corn, sorghum, sugar cane and in certain orchards.

It has been believed that soils receiving heavy application of pesticides show some changes in their physic, and chemical characteristics. One thought that such changes are due to herbicides application, therefore the aim of this investigation is to study such phenomina. For achieving this, adsorption and desorption of either paraquat or atrazine by soils and clays were studied. Different alluvial and calcateous—soils as well as clay minerals known to be predominant in such soils were used as adsorbents. Changes in some chemical, physical and mineralogical properties of such soils and clay minerals were also investigated. X-ray diffraction and infrared spectroscopic techniques were implicated to elucidate adsorption phenomina and to follow the changes in some properties of utilized adsorbents as well.

2. REVIEW OF LITERATURE

2.1. Adsorption of herbicides on soils and clays:

It is a common notation to call synthetically prepared organic compounds used in control and/or eradication of unwanted organisms as pesticides. Herbicides are broad categories of pesticides; they are used for weed control.

The fate and behaviour of pesticides in soll systems are dependent on many factors; chemical decomposition, volatilization, movement, plant uptake and adsorption. The phenomenon of adsorption-desorption seems to influence, directly or indirectly, the magnitude of the effect of the other factors. Adsorption, therefore, appears to be one of the major factors affecting pesticide-soil colloid interactions, Bailey et al. (1968). The factors affecting the adsorption and desorption of organic pesticides are reviewed by Bailey and White (1964). Such factors are soil or colloid type, physico-chemical nature of the saturating cation on the colloid exchange site, soil moisture content, nature of formulation and temperature all directly influence the adsorption of pesticides by soil systems, whereas the physical properties of soils as a substrate as well as climate exert more indirect influence. Greenland (1965) referred two factors of importance in the adsorption of organic ions; the large number of possible points of contact between ion and adsorbent, which leads to large change

_ 4 _

in the entropy of the system and the occurrence of specific adsorption sites which depend on the particular molecular characteristics of the cation and substrate.

Pesticides may be classified into three classes depending on their predominant charge characteristics; cationic pesticides, anionic pesticides and non-ionic or polar pesticides.

Pesticides of the first group are completely ionized, adsorbed by soils and clays through ion exchange processes and also replace the inorganic cations initially present at exchange surfaces, Khan (1978).

The forces involved in the adsorption and desorption of some herbicides were studied by McCall et al. (1972) using ionic and nonionic exchange resins. They found that Picloram was adsorbed mainly in the amonic form by Coulombic forces and, to a lesser degree, by weak physical bonds at sites on the resins where there were no Coulombic forces.

Soil properties that may contribute to the adsorption of herbicides have been studied by many investigators. Harris and Warren (1964) stated that adsorption of nerbicides by organic matter in soil tended to be less reversible and might actually increase with an increase in temperature. Hance (1965) concluded that organic matter content was the only soil property that could be correlated with adsorption of Diuron. Similar statement was introduced by Liu and Cibes-Viade(1973)

in their study on Fluometuron adsorption. They stated that the nature of clay minerals did not influence the amount of Aldrin adsorbed. This amount was found to be dependent on mechanical composition and organic matter content. Savage and Wauchope (1974) examined the adsorption-desorption equilibria of Fluometuron. Successive equilibrations resulted in a shift in the equilibria towards the adsorbed state, most likely due to a physical change in the adsorption capacity of the soil with repeated agitation. Desorption studies with different soils proved the importance of soil organic matter content on adsorption-desorption equilibria. Clay content of these soils was not significantly correlated with Fluometuron equilibrium constants. Day et al. (1968) found a negligible correlation between the amount of simazine causing 50% reduction in growth (GR_{50}) and pH and clay content. They added that there was a marked interrelationship between organic matter, cation exchange capacity, equilibrium concentration of simazine in the soil solution, and $\ensuremath{\mathrm{GR}}_{50}$ which was more closely correlated with organic matter percent than with any other factor. Swanson $\underline{\text{et}}$ $\underline{\text{al}}$. (1954) found that the retention of Lindane was related to soil porosity which could explain why fine textured soil requires heavier application of BHC for effective results in comparison with coalse textured sorts. Similar results were obtained by Kishk $\underline{\text{et}}$ $\underline{\text{al}}$. (1979) in their

- 6 -

study on the adsorption of Parathion by sandy soils of El-Tahrir and the alluvial soil of El-Nahda. They concluded that clay content is an important factor in the adsorption of Parathion.

The adsorption of many pesticides, however, depends on pH. Frissel (1961) found that the adsorption of herbicides having widely different molecular structures increased as the pH decreased. There exists a negative relationship between pH and maximum adsorption. He observed a negative adsorption of certain acids as 2.4 D and 2,4,5-T on both montmorillonite and illite over certain pH ranges. The pH value at which negative adsorption ceased and positive adsorption commenced was found to be a function of both adsorbent and the udsorbate, Baily and White (1964) summarized the role of pH in the adsorption of pesticides and referred to the effect of pH on the degrees of dissociation or association of the compound, total charge on the inorganic soil colloids and solubilities of certain elements in soils that may form stable complexes with pesticides.

Clay minerals and amorphous materials in a soil greatly affect the adsorption process of pesticides. Jurinak (1957) indicated that the adsorption of EDB (ethylene dibromide) by natural soils is a function of the predominant clay minerals present in soil. Kaolinite and illite had higher adsorption per unit surface than montmorillonite. Frissel (1961)

reported that montmorillonite adsorbed considerably more of various herbicides, of widely different chemical character, than did illite or kaclinite as the magnitude of the exchange capacity of these minerals are in this order, thereby the suggested mechanism of adsorption is dependent on the number of exchange sites. Harris and Warren (1964) observed that adsorption of herbicides was readily occurred on bentonite than on organic matter. Dickens and Hilthold (1967) found that the adsorption of methane arsenate by kaclinite and vermiculite increased with increasing concentration of DSMA in the equilibrium solution. Kaolinite and limonite adsorbed much more methane arsenate than vermiculite. Early and White (1964) reviewed that clay minerals of a high cation exchange capacity such as montmorillonite and vermiculite have a great capacity for adsorption of pesticides due to the Coulombic and Van der Waals' forces, while clay minerals of low cation exchange capacity e.g. illite, Kaolinite and chlorite would not have as large an adsorption capacity as montmortllonite and vermiculite. They also mentioned that the surface area of crystalline and amorphous oxides and hydroxide of silica, iron, and aluminium appears to be similar in magnitude of that of montmorillonite and vermiculite.

2.2. Adsorption of paraguat and diquat on soils and clays:

Paraquat and diquat are contact organocation herbicides usually supplied as chloride or bromide salts. Their chemical

1,1 ethylene-2,2 bipyridinium
where x: bromide

1,1 dimethy1-4,4 bipyridinium
where x: chloride

They are usually nominated as bipyridiniums. The common trade name of paraguat is Gramoxone, whereas for diquat is Reglone, Church (1968). Both compounds are soluble in water and dissociate to give divalent organic cations similar in compositions but differ only in the location of nitrogen atoms and, in turn, in the charges of the pyridine rings, Philen et al. (1971).

According to Knight and Tomlinson (1967) the adsorption of paraguat in mineral soils is characterized by three factors: (1) Up to a limiting value defined as the strong adsorption capacity (SAC), the solution concentration of paraguat is reduced below the level of chemical detection by suspended soil (2) Removal of soil organic matter does not greatly change SAC. Strong adsorption of paraguat is primarily a property of clay minerals and the presence of expanding lattice minerals is of particular importance (3) The adversarion of paraguat is strongly influenced by factors other than simple

electrostatic interaction. Weber et al. (1965) found that diquat and paraguat were completely adsorbed by montmorillonite and Kaolinite clays to the CEC. Adsorption on montmorillonite appeared to be primarily by the Coulombic forces of ion exchange supplemented by Van der Waals' forces. The cations were held in the clay lattice with the plane of the ring parallel to the silicate sheets. Adsorption of the cations by Kaplinite was on the edges or faces of the clay particles and the bonding was not as strong as that of the montmorillonite system. Haqua et al. (1970) in their study on the adsorption of paraguat on mentmorillonite using infrared and ultraviolet spectroscopy, found that diquat and paraquat form associated complexes on montmorillonite surface. They concluded that the charge transfer mechanism between the organic cation and the anionic silicate framework may also be involved. Philen et al. (1971) postulated that the relative preference for diquat demonstrates two linear relationships, one for internal adsorption and the other for external adsorption. Internal adsorption is characterized by a strong preference for paraquat on low charged smectites; a relative decreasing preference for paraquat with higher charged smectites, and a strong preference for diquat on highly charged expanded vermiculite. They also showed that preferential adsorption for paraguat by Kaolinite is quite similar to its adsorption on the external sites of vermiculites. Weber and Weed (1974)