1/ 201/4

ROLE OF THYMUS IN PEDIATRICS

75

ESSAY

Submitted in Partial Fulfilment of Master Degree in Pediatrics

Ву

Farida Fahmy Abou El Ezz
M.B., B.Ch.

618.92413

25331

Supervised by

Prof. Dr. HAMED SHATLA

Prof. of Pediatrics
Ain Shams University

Faculty of Medicine Ain Shams University

1987

1/

ACKNOWLEDGEMENT

Thanks first to God

Then I wish to express may deepest gratitude to **Dr. HAMED M. SHATLA** Prof. of Pediatrics, Ain Shams University. He provided me with the opportunity to work on this essay under his guidance of which I'm much proud. He prevised every word in this essay and to his advice constructive discussion and creticism, I am much obliged.

I am much indebted to the great help offered by **Dr. Nancy Abd El-Aziz** Lecturer of Pediatrics, Ain Shams University who provided much of her time and offered me valuable assistance and sincere help.

Thanks to the kind care, help and sympathy of both of them.

C O N T E N T S

	Page	
Introduction	1	
Literature review	3	
Embriology	3	
Development changes in weight and length of the thymus with age	5	
Anatomy of the thymus	7	
Histology of the thymus	10	
Physiology of the thymus		
Immunity	14	
The specific immune system	14	
T-cell	18	
T lymphocyte life span	21	
The role of the thymus in immunoreactivity	22	
Cell turn over in the thymus	23	
T cell function in the feutus and newborn	25	
Role of the thymus in B cells maturation	26	
Thymic hormones	27	
Effect of other endocrine gland on the thymus	33	
Assesment of the function of the thymus	38	
Monoclonal antibody	42	
HLA	46	
Disorders of the thymus	49	
DiGeorge syndrome	49	
Other immunodeficiency disease		
Primary immunodeficiency disease	58	

	Page
Aquired immunodeficiency	63
Syndrome	
The thymus in some neurological disorders	
Ataxia telangiectasia	66
Beckwith weidmann syndrome	67
The thymus in genetics disorders	69
The thymus in Down's syndrome	69
The thymus in blood diseases	70
The thymus in aplastic anamia	70
The thymus in autoimmune heamolytic anaemia	71
Thymus in thalassaemia intermedia	72
The thymus in Diabetes mellitus	74
The thymus in histocytosis X	75
The thymus in Mythenia gravis	77
Effect of malnutrition on the thymus	79
Thymic tumours	84
Summary	85
Abbreviation used	89
References	90
Arabic Summary	112

LIST OF FIGURES AND TABLES

		Page
Fig. (1);	Emberiology of the thymus	4
Fig. (2):	Insolution patterns of human thymus	6
Fig. (3):	Relations of the thymus gland in newborn infant	8
Fig. (4):	Histology of the thymus	11
Fig. (5):	Hassall's corpusle	13
Fig. (6):	Cell involved in immune system	16
Fig. (7):	T-cell marker	19
Fig. (8):	Correlation between circulating thymulin activity and serum T_3 or T_4	35
Fig. (9)	Changes in thymulin activity as assessed mented after antithyroid therapy patients	36
Fig. (10)	A nude mouse	39
Fig. (11):	Infant with DiGeorge syndrome	52
Fig. (12):	Serum thymic hormon activity in PEM	30
Table (1):	Main action of thymulin on T-cells	31
Table (2):	Effect of Vit. A. deficiency on the	
	thymus	82

INTRODUCTION

INTRODUCTION & AIM OF THE WORK

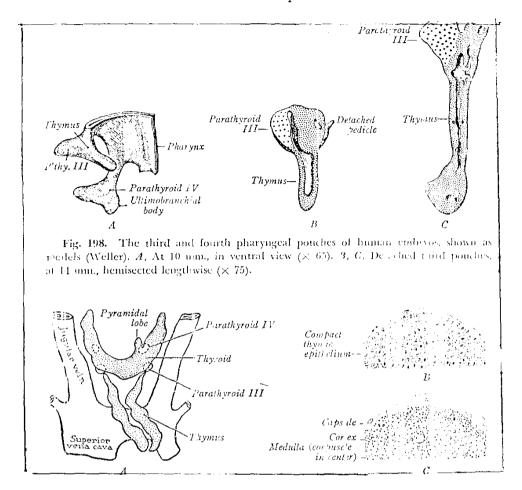
The thymus is a large organ which comprises about 0.8% of the body weight at birth in man. It has epithelial, endocrine and lymphoid (immunological) components (Toylor, 1965).

The function of the thymus in relation to immunity is the production of "T" cells which are involved in cellular immune responses and also help "B" cells to start humoral antibody responses. The thymus secretes a hormone like substance called immune complement factor (Cosba & Miller, 1963).

The thymus populates peripheral lymphatic organs, such as the lymph nodes and spleen, with immunocompetent T lymphocytes that are responsible for cellular immunity. It is thus one of the most important organs concerned with defense against infections.

It plays a key role in the development of immunological competence as manifested by the capacity to reject allografts and to develop delayed type of hypersensitivity. Removal of the thymus from newborn mice was found to cause lymphopenia and deficiency in all manifestations of the immune response (Altemier 1965). Therefore in the rare Swiss type of hypogammaglobulinemia

in which rudimentary development of the thymus is associated with failure of development of all types of immunologic responses including antibody production, graft rejection and delayed type of hypersensitivity (Shatla 1974). Thus the thymus plays an important role in the original genesis of the entire lymphoid system of the body. So the aim of this study is to delineate the main points in the embriology, anatomy, physiology, pathology and disorders of the thymus gland.


LITERATURE REVIEW

. 0

LITERATURE REVIEW

EMBRIOLOGY OF THE THYMUS:

Toward the end of the sixth week the right and left ventral recesses of the third pharyngeal pouches are converted into two solid flask-shaped masses by proliferation of endodermal cells. The masses grow medially and come in contact, and form the bases of the bilobed thymus gland, (Fig. 1) (Nerd 1974). thymus lies immediately ventral to the aortic sac and as the heart descends, it follows it into the thorax. The endodermal masses are invaded by strands of mesenchyme which differentiate into the thymic blood vessels. Colony forming units reach the thymus via the blood stream and become T lymphocyte progenitors. their turn supply immunologically competent T lymphocytes to the general lymphatic tissues of the body via the bloodstream. The reticular cells and concentric corpuscles of the thymus are derived from endodermal cells (Wendell, 1984).

Fig. (1):

Embriology of the thymus gland from Nerd L.R. 1974.

Edis Anatomy a text book and laboratory manual of emberiology Ch. 13, P. 23.
Pub. Holl G.B. London.

DEVELOPMENTAL CHANGES IN WEIGHT & LENGTH OF THE THYMUS WITH AGE:

The average weight of the thymus gland at birth is 10 gm (0.8% of wt.). The weight of the gland increases steadily from birth to puberty and then it slowly decreases in weight until old age (Fig. 2). At puberty it weighs 30 gm. in the young adult 18.6 gm. and in the old adult 12.5 gm. The thymus constitutes 0.8 percent of the body weight at birth and 0.03 to 0.05 percent in adulthood (Edmunds, 1973). However, it has to be put into consideration that acute atrophy in the thymus can take place within a short period of time due a variety of diseases or insults e.g. severe stress (Henry, 1968).

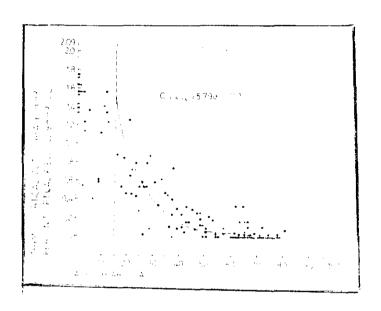


Fig. (2):

Insolution patterns of human thymus from P.Tosi. Kraft, P. Luzi, Marcella G. (1982). Clin. Exp. Immunol. 47, 497-504.

ANATOMY OF THE THYMUS