
PHYSIOLOGICAL GENETIC STUDIES ON SOME IRRADIATED SOYBEAN CULTIVARS

BY

HODA MOHAMED ELDEMERDASH

A thesis submitted in partial fulfillment

of

630.28115 H.M

the requirments for the degree of

MASTER OF SCIENCE

in

Agriculture

(Genetics)

12719

Department of Genetics Faculty of Agriculture Ain Shams University

1993

Approval sheet

PHYSIOLOGICAL GENETIC STUDIES ON SOME IRRADIATED SOYBEAN CULTIVARS.

BY

HODA MOHAMED ELDEMERDASH

B.Sc. (Agric.), Ain Shams
University, 1973

This thesis for M. Sc. degree has been approved by:

Prof. Dr. M. I. Nasr M. J. Nac.

Prof. and Head of Genetics Dep., Faculty of Agric. Menofia
University

Prof. Dr. A. A. Tayel

Prof. of Genetics, Faculty of Agric. Ain Shams University.

Prof. Dr. M. A. Rashed (supervisor) M. A. Rashed

Prof. of Genetics, Faculty of Agric. Ain Shams University.

Date of Examination: 21/4/1993

PHYSIOLOGICAL GENETIC STUDIES ON SOME IRRADIATED SOYBEAN CULTIVARS

BY

HODA MOHAMED ELDEMERDASH

B.Sc. (Agric.), Ain Sahms University, 1973

under the supervision of:

Prof. Dr. M. A. Rashed,
Prof. of Genetics, Ain Shams Univ.

Dr. Eman. M. Fahmy

Associate Prof. of Genetics, Ain Shams Univ.

Prof. Dr. M. T. M. Sharabash

Prof. of Agronomy, National Center Res. and Radiation Technology.

Abstract

This investigation was carried out to study the effect of three gamma ray doses; 7.5, 10and 15 Krad on three soybean cultivars for the yield and its components. Biochemical genetic markers as protein and isozymes electrophoresis were applied on the third generation under 15 Krad to find the correlations

genetic markers as protein and isozymes electrophoresis were applied on the third generation under 15 Krad to find the correlations between these markers and the treated plants.

The study revealed that the 15 Krad gamma ray treatment seems to be a predictable treatment for isolating some mutant (s) at the successive treated generations. SDS-PAGE technique can be used in characterizing high and low yielding plants under control and gamma ray treatments. Esterase isozymes showed variations in the number of bands, intensity and/or density. IPO isozymes showed comparable results between Mead and Clark cultivars, while Crawford showed two more bands. GOT isozymes was appeared as a good marker for selecting high yielding genotypes in the successive breeding generations while LAP isozymes was not a good tool in distingushing between high and low yielding plants under control and gamma ray treatments.

ACKNOWLEDGEMENT

The author wishes to express her sincere appreciation and gratitude to Professor Dr. Mohammed A. Rashed, Professor of Genetics, Faculty of Agric., Ain Shams University, for his kind supervision, suggesting the problem, continuous advice and valiable suggestions in performing and writing the manuscript.

Heart felt thanks are also extended to Dr. Eman M. Fahmy, Assistant Professor of Genetics, Faculty of Agric., Ain Shams University, for her kind supervision, energetic guidance and valiable suggestions in performing and writing the manuscript.

Many thanks are due to Professor Dr. M. T. M. Sharbash, the head of Plant Production and Entomology Department, National Center for Research and Radiation Technology, Atomic Energy Authority (N.C.R.R.T) for his unlimited help supervission during this investigation.

Special acknowledgement are extended to Proffessor Dr. Fatthy M. Abdel-Tawab, Professor of Genetics, Faculty of Agric., Ain Shams University, for his suggesting the problem, valiable advice during statistical analysis, continuous advice.

Acknowledgement is also extended to all staff members of the Dept. of Genetic, Fac. of Agric., Ain Shams University, whose encouragment made this work possible. Finally, I also feel most grateful to my husband Dr. Ahmed Abdalla, my daughter Marwa and my son Mohammed for their continuous encouragement and patiance.

CONTENTS

·	raye
ABSTRACT	
ACKNOWLEDGEMENT:	
LIST OF TABLES:	
LIST OF FIGURES:	
INTRODUCTION:	1
LITERATURE REVIEW:	3
A- Effect of Gamma Radiation	3
B- Biochemical Genetic Studies	15
1- Seed Protein Electrophoresis	15
2- Isozymes Electrophoresis	21
MATERIALS AND METHODS:	26
A- Materials	26
B- Methods	27
1- Seed Treatment	27
2- Field Experiments	27
3- Statistical Procedure	28
4- Biochemical Genetic Studies	28
a- SDS polyacrylamide gel electrophoresis	29
b- Isozymes electrophoresis	34
(i) Esterase isozymes profiles	35
(ii) Glutamic oxaloacetic transaminase (GOT)	. 36
(iii) Indophenol oxidase (IPO)	36
(iv) Leucine aminopeptidase (LAP)	36
RESULTS AND DISCUSSION	38
A- Effect of Gamma Radiation:	38
1- Mature Plant Height (Y_1)	38
2- Number of Branches per Plant (Y_2)	45
3- Number of Pods per Plant (Y3)	51
4- Number of Seeds per Plant (Y.)	58

5- Seeds Weight per Plant $(Y_5) \dots$	63
6- Days to Maturity (Y_6)	68
B- Biochemical Genetic Studies:	73
1- SDS Electrophoresis	73
2- Isozymes Electrophoresis	80
(a) Esterase isozymes	80
(b) GOT isozymes	86
(c) IPO isozymes	91
(d) LAP isozymes	95
SUMMARY AND CONCLUSION	101
REFERENCES	105
ARABIC SUMMARY	

LIST OF TABLES

			Page
Table	(1):	Analysis of variance for mature plant height trait (Y_i) for three soybean cultivars irradiated by three gamma ray doses at three successive generations	39
Table	(2):	Means of mature plant height trait (cm) at harvest time (Y_1) and comparisons among them for Mead, Clark and Crawford soybean cultivars irradiated by gamma ray doses	. 40
Table	(3):	Multiple comparisons for mature plant height trait (Y_i) among three soybean cultivars treated with three gamma ray doses at three successive generations	. 41
Table	(4):	Multiple comparisons for mature plant height trait (Y1) between three gamma ray doses and the control for three soybean cultivars at three successive generations	. 41
Table	(5):	Analysis of variance for number of branches/plant trait (Y2) for three soybean cultivars irradiated by three gamma ray doses at three successive generation	46
Table	e (6)	: Means of number of branches/plant trait (Y_2) and comparisons among them for Mead, Clark and Crawford soybean cultivars	

		irradiated by gamma ray doses 47
Table	(7):	Multiple comparisons for number of
		branches/plant trait (Y_2) among three
		soybean cultivars treated with three
		gamma ray doses at three successive
		generations
Table	(8):	Multiple comparisons for number of
		branches/plant trait (Y2) between
		three gamma ray doses and the control
		for three soybean cultivars at three
		successive generations 48
Table	(9):	Analysis of variance for number of
	, .	pods/plant trait (Y_3) for three soybean
		cultivars irradiated by three gamma ray
		doses at three successive generations 52
Table	(10):	Means of number of pods/plant trait (Y_3)
	` '	and comparisons among them for Mead,
		Clark and Crawford soybean cultivars
		irradiated by gamma ray doses 54
Table	(11):	Multiple comparisons for number of
	,	pods/plant trait (Y3) among three
		soybean cultivars treated with three
		gamma ray doses at three successive
		generations 55
Table	(12):	Multiple comparisons for number of
10010	·/•	pods/plant trait (Y_3) between three
		gamma ray doses and the control for

	three soybean cultivars at three successive generations	55
Table(13):	Analysis of variance for number of seeds/plant trait (Y_4) for three soybean cultivars irradiated by three gamma ray doses at three successive	
	generations	60
Table(14):	Means of number of seeds/plant trait (Y_4) and comparisons among them for Mead, Clark and Crawford soybean cultivars irradiated by gamma ray doses	61
Table(15):	Multiple comparisons for number of seeds/plant trait (Y ₄) among three soybean cultivars treated with three gamma ray doses at three successive generations	62
Table(16):	Multiple comparisons for number of seeds/plant trait (Y4) between three gamma ray doses and the control for three soybean cultivars at three successive generations	62
Table(17):	Analysis of variance for seeds weight/plant trait (Y ₅) for three soybean cultivars irradiated by three gamma ray doses at three successive generations	64

Table (18):	Means of seeds weight/plant trait (Y_5)	
	and comparisons among them for Mead,	
	Clark and Crawford soybean cultivars	
	irradiated by gamma ray doses	66
Table(19):	Multiple comparisons for seeds	
	weight/plant trait (Y_5) among three	
	soybean cultivars treated with three	
	gamma ray doses at three successive	
	generations	67
Table(20):	Multiple comparisons for seeds	
	weight/plant trait (Y_5) between three	
	gamma ray doses and the control for	
	three soybean cultivars at three	
	successive generations	67
Table(21):	Analysis of variance for days to	
	maturity trait (Y_6) for three soybean	
	cultivars irradiated by three gamma ray	
	doses in three successive generations	69
Table(22):	Means of days to maturity trait (Y_6) and	
	comparisons among them for Mead, Clark	
	and Crawford soybean cultivars irradiated	
	by gamma ray doses	70
Table(23):	Multiple comparisons for days to	
	maturity trait (Y_6) among three	
	soybean cultivars treated with three	
	gamma ray doses at three successive	
	generations	72

Table(24):	Multiple comparisons for days to	
	maturity trait (Y_6) between three	
	gamma ray doses and the control for	
	three soybean cultivars at three	
	successive generations	72
Table(25):	Seeds weight/plant of the plants choose	
	for electrophoretic studies for the	
	three soybean cultivars Mead, Clark	
	and Charlend	7.4

List of Figures

	Page
Figure(1):	SDS_PAGE profiles of seed protein according to their density and intensity at M ₃ generation of irradiated Mead soybean cultivar
Figure(2):	SDS_PAGE profiles of seed protein according to their density and intensity at M ₃ generation of irradiated Clark soybean cultivar
Figure(3):	SDS_PAGE profiles of seed protein according to their density and intensity at M ₃ generation of irradiated Crawford soybean cultivar
Figure(4):	Electrophoretic patterns of Esterase isozymes at M ₃ generation of irradiated Mead soybean cultivar compared with control
Figure(5):	Esterase isozymes zymograms at M ₃ generation of irradiated Mead cultivar 81
Figure(6):	Electrophoretic patterns of Esterase isozymes at M ₃ generation of irradiated Clark soybean cultivar compared with control
Figure(7):	Esterase isozymes zymograms at M_3 generation of irradiated Clark cultivar