DETECTION OF RADON PRODUCTS IN ATMOSPHERE AND ITS CONCENTRATION

Thesis

Submitted in Partial Fulfillment of the Requirements for M.Sc. Degree in Physics

Presented by

Mohamed HUDA MOHD AL-NAEMI

To

Department of Physics, Faculty of Women Ain Shams University

1993

TO MY FAMILY FOR THEIR MORAL SUPPORT WITH MY SINCERE THANKS AND DEVOTION

Professor Dr. Ali Elnaem,

Professor of Theoretical Nuclear Physics,

Faculty of women, Ain Shams University.

Professor Dr. Hussein Abou-Leila,
Professor of Nuclear Physics, Qatar University.

Professor Dr. Latifa Al-Houty,
Professor of Physics, Qatar University.

Head Of Physics Department, Faculty of wemen,
Ain Shams University, Professor Dr. Aida El-Bialy.

AIN SHAMS UNIVERSITY

Faculty of Women

The student Huda Mohd Al-Naemi has pass the following courses during her primary year for master degree:

- 1 Quantum Mechanics
- 2 Electronics
- 3 Solid State Physics
- 4 Radiation Physics
- 5 Nuclear Physics
- 6 German Language

ACKNOWLEDGEMENTS

I wish to express my grateful thanks to Professor. Dr. Aida El-Bialy, Head of the Physics Department, Faculty of Women, Ain Shams University, Egypt, for continuous encouragement and help.

My sincere gratitude goes to Prof. Dr. Ali Elnaem for sponsoring and supervising the present work.

The author expresses her deep gratitude to Prof. Dr. Latifa Al-Houty, Head of the Physics Department, University of Qatar, and Prof. Dr. Hussein Abou-Leila, for suggesting the topic of research and their continuous supervision and quidance throughout the present work.

I would also like to extend my deepest thanks to Dr. Wafaa Arafa and Dr. Hussein El-Samman for their help in computer programming, as well as establishing the techniques of measurement for the present work.

My sincere gratitude to Dr. Gabr Al-Naemi, Director of the Scientific and Applied Research Centre at the University of Qatar, for providing facilities and financial support for the present work as a joint project between the Centre and the Physics Department.

As to the Hamad Medical Corporation, where I work, I am deeply grateful and indebted to them for providing me with the opportunity to devote my full-time work towards the Master's Degree.

I would also like to thank Prof. Michel Monnin and Dr. Jean Luc Seidel of Labo de Hydrogeologie, Montpellier, France, who took me as a student for two months. During this period, I gained valuable experience about the radon problem and some of its detection methods.

Finally, I would also like to extend my thanks to all members of the Physics Departments of the University of Qatar and Ain Shams University.

Contents

			Page No
Introduction			
Summary			
	-		
CHAPT	rer 1		
1.1	RADON GAS		1
	1.1.1	Radon Isotopes	1
	1.1.2	Radon-222 and its Daughters	3
	1.1.3	Sources of Radon Gas	5
	1.1.4	Radon Concentration Measurement	6
		Units	
1.2	RADON HAZZ	ARD	8
	1.2.1	The Action Level	9
	1.2.2	Radon Risk Estimation	10
CHAP	TER 2		
2.1	DETECTION	TECHNIQUES	15
2.2	RADON PERI	MEABILITY	17
2.3	RADON DETECTORS		19
	2.3.1	Lucas Cells	19
	2.3.2	Ionization Chambers	21
	2.3.3	Two-Filter Method	22
	2.3.4	Semiconductor Detectors	24
	2.3.5	Alpha Cards	25
	2.3.6	Electret Detectors	26
	2.3.7	Thermoluminescent Detectors	27
	2.3.8	Activataed Charcoal	28
		colid State Nuclear Track Detector	29

CHAPTER 3

Intro	oduction		3 4	
3.1	THE METHO	D	35	
3.2	GAMMA RAY	DETECTOR	38	
	3.2.1	HPGe Detector	38	
	3.2.	1.1 Spectrometer Performance and Calibration	42	
	3.2.2	Scintillation Detector	47	
	3.2.	2.1 Spectometer Performance and Calibration	49	
	3.2.3	Detector Shielding	50	
	3.2.4	Detector Choice	50	
3.3	METHOD IMPROVEMENT			
	3.3.1	Detection System Efficiency	55	
	3.3.2	Optimum Exposure Time	60	
3.4	EXPERIMENTAL VERIFICATION OF MDL AT			
	DIFFERENT EXPOSURE TIME			
	3.4.1	Choice of Water Gain	63	
	3.4.2	The Experiment	64	
	3.4.3	The Results	64	
3.5	MEASUREMENT OF RADON CONCENTRATION IN			
	SOME HOUSES IN THE CITY OF DOHA			
	3.5.1	Radon Survey	67	
	3.5.2	Survey Parameters	69	
	3.5.3	Gamma Ray Spectrum from	72	
		Exposed Canisters		
	3.5.4	Radon Concentration and the MDL	73	
Refe	rences		81	
Appe	ndix 1			
Arab	ic Summary			

Introduction

In recent years, public and national authorities in many countries have shown a great interest in measuring and controlling the natural radioactivity in the environment. The average dose received from radiations resulting from the decay of radon gas and its daughters is believed to be larger than the sum of doses received from all other natural and man-made sources of radiations.

Because of energy crises, compact energy saving houses and buildings became very common in most countries with very cold and/or very warm climates. These houses and buildings usually have limited ventilation causing considerable accumulation of radon gas in their environment.

Because of the well-established relationship between lung cancer and high radon concentration, indoor radon concentration is today subject to regulations in many countries.

There are three radon isotopes (219Rn, 220Rn, 222Rn) in nature, resulting from the decay of the well-known three naturally occurring radioactive series. Since the element is chemically inert, it has the ability to migrate from its sources without any chemical reactions.

The half-life of ²¹⁹Rn is 3.96 s, that of ²²⁰Rn is 55.6 s, and that of ²²²Rn is 3.82 days. Owing to the short half-life of the first two isotopes, only ²²²Rn can migrate a significant distance from its source and constitute the major part of the dose caused by radon gas. According to this fact, the present work will deal only with ²²²Rn isotope.

The climate of the State of Qatar is very warm during the summer and also for considerable parts of the spring and autumn. Energy-tight houses and buildings with air conditioning working day and night for several months are very common. Consequently, the problem of accumulation of indoor radon may exist. No measurements of radon concentration in Qatar have been performed before.

The aim of the present work is to implement a suitable technique to measure radon concentration in Qatari houses and buildings. As a first stage, it was found reasonable to start with a technique to evaluate the short-term average indoor radon concentration. The activated charcoal method was chosen to perform this evaluation.

Although many of the building materials used in Qatar are imported, without controlling the content of natural radioactivity, the geology of Qatar is known to be free from a high concentration of radioactive sediments. Therefore, it is most probable that the concentration of

radon will be low. Consequently, great effort has been put into the present work towards the improvement of the technique. The improvement is guided towards increasing the accuracy, as well as the sensitivity, of the method to decrease its minimum detectable concentration. Using the improved technique, a limited number of indoor radon concentration in some Qatari houses was measured.

Summary

The present work is represented in three chapters. The first includes a brief survey of radon gas sources, decay products of its isotope ²²²Rn, its hazards, and estimation of risk due to exposure to radiation emitted from the gas and its decay products.

The second chapter reviews the most important methods for detecting the gas. All these methods are based on the detection of alpha and/or gamma radiation emitted during the decay process. The detections are clarified according to their active or passive character. The methods reviewed are: Lucas cells, ionization chambers, two filter methods, semiconductor detectors, activated charcoal methods and, finally, solid state nuclear track detectors with their different configurations.

The third chapter is the main chapter. It includes detailed description of the technique used in the present work, how it improved and was used after improvement to measure radon concentration in some Qatari houses.

Since no measurements have been made before to measure radon concentration in Qatar, it was found reasonable to start with a technique to evaluate the short-term average indoor radon concentration. The activated charcoal method

was chosen for this purpose. This method is based on exposing a canister containing a known amount of activated charcoal for a few days to the environment. During exposure, the canister will absorb radon gas and humidity. After exposure, the canister is weighed to estimate the water gain, and then left for at least three hours to attain equilibrium between the absorbed radon and its gamma emitting daughters. After equilibrium, gamma spectrum from the canister are analyzed by a gamma spectrometer, the interests of gamma lines from ²¹⁴Pb and ²¹⁴B, radon daughters are measured. From these interests, the radon concentration in pCi/l can be deduced by using a suitable calibration factor. This calibration factor depends on the exposure time of the canister, as well as its water gain.

The present work followed the same procedures and conditions stated by the United States Environmental Consequently, their Committee (EPA). Protection Since the calibration calibration factors were used. factor depends on the exposure time as well as the water gain by canister, the EPA presented a curve for an exposure time equals two days. For other exposure times, the calibration factor should be adjusted by an adjusting factor depending on the humidity of the environment. Values for the adjusting factor are given by three curves for different humidity ranges.

In the present work, it was found convenient to gather and

represent all information of the calibration factor and adjusting factors in only one three dimensional curve. The curve will represent directly the adjusted calibration factors for different exposure times and water gain. This was done by a simple program executed on a personal computer and it can read directly the adjusted calibration factor at different exposure conditions.

Although many building materials used in Qatar are imported without control of their content of natural radioactivity, the geology of Qatar is known to be free from high concentration radioactive sediments. Therefore, it is most probable that the concentration of radon will be low. Consequently, great efforts have been made to improve the method, after its adaption, to the needs of the desired measurements.

The factors which brought improvements to the method can be summarized as follows:

A - Detector

A detailed study of the characteristics and performance of a hyper pure germanium and a scintillation gamma spectrometer was performed. The results indicated that the scintillation detector is the most suitable for the present study owing to its high detection efficiency. Its poor energy resolution is not a matter of concern.