V10x / L

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

02742

GRAVITY-ASSISTED HEAT PIPES

Thesis Submitted for the Degree of

DOCTOR OF PHILOSOPHY

Ву

MAHMOUD MOHANED MAHMOUD ABO EL-NASR

1986

بسم الله الرحين الرحيس

In the Name of Allah, Most Gracious, Most Merciful.

Verily, when he intends a thing, his command is, "Be" and it is! So Glory be to him in whose hand is the dominion of all things; and to him you all will return.

AL-QURAN XXXV1: 82-83

SUPERVISORS

Prof. G. RICE

The Dept. of Engineering

Reading University,

U.K.

Prof. A. EL'EHWANY

Dept. of Energy &

Automotive Engineering,

Ain Shams University

Dr. M.I. SALEM

Dept. of Energy &

Automotive Engineering,

Ain Shams University.

EXAMINERS

Prof. P.D. DUNN

The Head of the Dept. of Engineering Reading University, U.K.

Prof. M.M. HELAL

Prof. of Heat Transfer To What Cairo University.

Prof. A. EL'EHWANY

Prof. of Wech. Engineering Ain Shams University.

Sole 21

ACKNOWLEDGEMENT

I would like to express my thanks to God, for His gifts, that have enabled me to achieve such a thesis.

In His hands I put all that he has given me.

My sincere thanks to Dr. G. Rice for his encouragement and help in supervising this research work.

My gratitude to Prof. A.E. El'Ehwany for his help during the research revision.

I am also indebted to Asst. Prof. Dr. M.I. Salem for his help during the research revision.

My thanks are also due to the many staff of the Department of Engineering, University of Reading, who have helped throughout the work.

My sincere thanks also go to my friends especially Mr. M. Ramsden for their support and encouragement.

The author also wishes to express appreciation to his wife, daughter and son for their patience and understanding throughout the course of this work.

Finally my thanks due to the Egyptian Government who provided the financial support that has made this research work possible.

ABSTRACT

Heat pipes are devices capable of high heat transfer rates under isothermal conditions. Operation is restricted according to various physical limits, namely, sonic flow of the vapour, entrainment, liquid flow and boiling. In the present study the entrainment limit was investigated for gravity-assisted heat pipes both with and without wicks.

The wicking limit was investigated for the gravity-assisted heat pipes with wicks for both laminar and turbulent liquid flow.

Experiments with copper-water and copper-acetone pipes have been carried out. The maximum performance due to the entrainment limit and the wicking limit have been measured. For simplicity cylindrical geometry only has been used.

Out of many possible controlling variables, the effects of the following have been studied:

- a. The diameter of the pipe.
- b. The evaporator length.
- c. The adiabatic length.
- d. The working fluid.

- e. The operating pressure and temperature.
- f. The heat flux.
- g. The wick size and the number of wicking layers.

The experimental results have been assessed and compared with existing theories and previous experimental work. There is seen to be good correlation between published and measured results of the present study with regard to the wicking limit, but for the entrainment limit there is inconsistency between different authors. This thesis presents a correlation for entrainment limit which is validated experimentaly for two working fluids with use of experimental results using three different sizes of thermosyphons and two different sizes of heat pipes.

	TABLE OF CONTENTS	Page
ACKNOWLED	CEMENTS	i
ABSTRACT	• • • • • • • • • • • • • • • • • • • •	ii
NOMENCLAT	•	viii
CHAPTER 1	INTRODUCTION.	1
1.1	Sonic Limit	5
1.2	Entrainment Limit	5
1.3		7
1.4		8
CHAPTER 2	SUMMARY OF PRIOR WORK.	10
2.1	Thermosyphons	11
2.2		16
2.3		28
	2.3.1 Energy Saving by Heat Recovery	29
	2.3.2 Heat Transport	35
	2.3.3 Isothermalization	35
CHAPTER 3	OBJECTIVES AND SCOPE OF INVESTIGATION.	40
3.1	Fluid and Container Material Selection	41
3.2	Wick Selection	41
3.3	Vertical Two-Phase Closed Thermosyphons .	47
3.4	Heat Pipes	4.0

		Page
CHAPTER 4	EXPERIMENTAL FACILITY AND PROCEDURES.	50
4.1		50
	4.1.1 Gas-Gap Calorimeter	54
	4.1.2 Direct Water Jacket Calorimeter	58
4.2		59
	4.2.1 Parts Manufacturing	59
	A. The Container	59
	B. The Upper Cap	
	C. The Wick	59
	D. The Working Fluids	62
		62
	4.2.2 Heat Pipe Cleaning	62
	4.2.3 Assembly	63
	4.2.4 Tube Testing	65
4.3	Experimental Procedures	65
CHAPTER 5	ANALYSIS OF TEST RESULTS.	69
5.1	Thermosyphons	69
	5.1.1 Water Thermosyphons	69
	5.1.2 Acetone Thermosyphons	74
5.2		
	5.2.1 Laminar Flow Heat Pipes	76
		76
	A. Water Heat Pipes	76
	B. Acetone Heat Pipes	88

		P_{age}
	5.2.2 Turbulent Flow Heat Pipes	91
	A. Water Heat Pipes	92
	B. Acetone Heat Pipes	97
CHAPTER 6	CONCLUDING DISCUSSION.	103
6.1	General Discussion	103
	6.1.1 Entrainment Limit	103
	6.1.2 Flooding	107
	6.1.3 Wicking Limit	109
	A. Laminar Flow	109
	B. Turbulent Flow	110
	C. Composite Wick	113
6.2	Comparison of Results	114
	6.2.1 Thermosyphons and Heat Pipes	114
	6.2.2 Comparison of this Study with Other	
	Investigations	117
•	A. Thermosyphons	117
	B. Heat Pipes	120
6.3	Conclusions and Recommendations	127
	6.3.1 Conclusions	127
	A. Thermosyphons	127
	B. Heat Pipes	128
	6.3.2 Recommendations for Further Study	3.00

vii

																					Page
REFERENC	ES	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	131
APPENDIX	1	•	•			•		•	•	•	•			•	•	•	•		•	•	145
APPENDIX	2	•	•	•	•	•		•	•	•	•	•		•				•	•	•	149
APPENDIX	3	•		•	•	•	•		•			•						•			156
APP ENDIX	4	•	•	•	•	•	•	•		•	•		•	•							163

viii

NOMENCLATURE

Λ	cross-sectional area	_m 2
a	speed of sound in vapour	m/s
$^{\mathrm{B}}\mathbf{o}$	Bond number	
Ŋ	diameter	m
$\mathtt{D}_{\mathbf{E}}$	equivalent diameter	m
$^{\mathtt{E}}t$	dimensionless entrainment parameter	-
g	local gravitational acceleration	m/s ²
Ī9	Liquid fill, $V_{\rm e}/(\Lambda \ell_{\rm e})$	was
$^{\mathrm{G}}\mathbf{r}$	Grashof number	_
G	mass of liquid	kg
h	heat transfer coefficient	$W/(m^2K)$
H	depth	m
^h fg	specific latent heat of vaporization	J/kg
К	fluid permeability of wick	m ²
K _u	Kutadeladje constant	_
^К р Ё	dimensionless pressure parameter	_
Û	length	m
M	Mach number, V _v /a	-
n	mesh size	per inch
nL	Number of mesh layers	_
P	pressure	
$^{ ext{P}}_{\mathbf{a}}$	atmospheric pressure	Pa

đ	rate of heat transfer per unit area	w/m^2
Q	rate of heat transfer	W
Q _o	dimensionless power	•••
R	gas constant	J/(kgK)
$^{ m R}{_{f e}}$	liquid-film Reynolds number	-
$^{ m R}{ m e}{f v}$	axial Reynolds number in vapour	-
r	radius	m
r _{oʻ}	minimum capillary radius	m
S	surface area	_m 2
T	temperature	Co
$^{\mathrm{T}}$ eff	effective operating temperature	K
t	thickness	m
V	volume	_m 3
Ve	volume of liquid in unheated pipe	_m 3
X	characteristic length in entrainment	
	equation	m
\mathbf{Z}	thermal resistance	K/W
\propto	velocity profile correlation factor	_
B	inclination of pipe to horizontal	deg
在是	pressure drop in liquid	Pa
V b^	pressure drop in vapour	e P a
LP.	maximum capillary pressure difference	P a
Δ T	temperature difference	a K
\in	porosity, (volume of pores)/(volume of	
	porous wick)	***

0	contact angle	deg
λ	thermal conductivity	W/(mK)
M	dynamic viscosity	Ns/m ²
3	density	kg/m^3
6	surface tension	N/m
>	kinematic viscosity	m ² /s
8	ratio of specific heats	•••
S	surface depth	m
δ*	reference surface depth	m

SUBSCRIPTS

а	adiabatic section
С	condenser
d	dummy subscript representing c or e
е	evaporator
eff	effective value of a quantity
ent	entrainment
ſ	liquid film
E	gravity head
h	hydrostatic head
i	internal dimension
l	liquid
m	mean
max	maximum
O	external dimension