STUDIES ON TETRAHYDRONAPHTHALENONE-4-SPIROPIPERIDINEDIONE DERIVATIVES

BY

SUZAN MOHAMED I. BATTERJEE

B.SC., M. SC.

347. 2 S H

A THESIS

SUBMITTED TO

FACULTY OF SCIENCE - AIN SHAMS UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE
(CHEMISTRY)

7020,3

CAIRO NOVEMBER 1993

STUDIES ON TETRAHYDRONAPHTHALENONE-4-SPIROPIPERIDINEDIONE DERIVATIVES

THESIS ADVISORS:

PROF. DR. AHMED M. KADDAH
PROF. DR. ASHRAF A. HAMED
DR. MOHAMED SALEH I.T. MAKI
DR. WEDAD M. ABDELAZIM

APPROVED THESIS

A M Sackett

HEAD OF CHEMISTRY DEPARTMENT

PROF. DR. A. F. FAHMY

بِسْمِ اللهِ الرحْمَنِ الرحِيمْ

سُبْحَانَكَ لاعِلْمَ لَنَا إلا مَا عَلَمْتَنَا إِنكَ أَنْتَ الْعَلِيمُ الْحَكِيهِ

صدق الله العظيم سورة البقرة آية "٣٢"

ACKNOWLEDGEMENT

I would like to express my sincerest appreciation to **Dr. A.M. Kaddah**, rofessor of Organic Chemistry, Faculty of Science, Ain - Shams University not nly for suggesting the research project, but also for his constant support aluable advice through out this work.

Sincerest appreciation is also extended to professor **Dr. A. Hamed**, hemistry Department, Faculty of Science, Ain Shams University, for his kind ipport.

Sincerest appreciation is also credited to **Dr. M.S. Maki**, Head of hemistry Department, Faculty of Science, King Abdulaziz University, for his anstructive suggestions and valuable criticism.

Cordial gratitude is also extended to **Dr. Wedad M. Abdel Azim,** Manager Research Sector, Ghamra Research Center, Misr Petroleum Co., whose forts and guidance contributed to a far extent with a view for achieving the essis target.

Special thanks to the technicians in both Ain Shams University and King dulaziz University for their kind help.

CONTENTS

SUMMARYi
INTRODUCTION
I-Synthesis and reactions of
α , β -unsaturated carbonyl compounds.
II-Synthesis & reactions of
pyrazolines and spiropyrazolines.
EXPERIMENTAL
-Synthesis of spiro-3-arylidene87
1,2,3,4-tetrahydro-6-substituted-4-
naphthalenone-(1:3')-2',6'-piperidine-
diones and 4-phenanthrenone derivatives.
-Reactions of naphthalenone and
4-phenanthrenone derivatives with
hydrazine derivatives:
-with hydrazine hydrate90
-with phenylhydrazine93
-with benzoylhydrazine96
-Synthesis of dibromo Ketone derivatives99
-Reactions of the dibromo Ketones100
with secondary amine.
-Hydrolysis of naphthalenone and
4-phenanthrenone derivatives.

pag
-Synthesis of naphthalenone and100
4-phenanthrenone dioxopyran derivatives.
-Friedel craft's reaction of115
naphthalenone and 4-phenanthrenone
dioxopyran derivatives.
-Action of diazomethane on
naphthalenone and 4-phenanthrenone
derivatives.
-Thermal decomposition of spiro124
pyrazoline derivatives.
-Action of alcoholic hydrochloric
acid on spiro naphthalenone and126
4-phenanthrenone derivatives.
RESULTS & DISCUSSION127
REFERENCES21
ARABIC SUMMARY

SUMMARY

SUMMARY

When p-tolyl-, p-anisyl-, p-flourophenyl- and 1-naphthyl acetonitrile were allowed to react with acrylonitrile in presence of Triton B, the corresponding trinitrile derivatives were obtained.

When the trinitrile derivatives boiled with dilute hydrochloric acid (for twenty hours) gave 3-aryl-2,6-piperidinedione-3-propionic acids, which when treated with concentrated sulphuric acid and polyphosphoric acid, ring closure took place with the formation of the cyclic ketones $(I_{\mathbf{a},\mathbf{c}})$ and $(I_{\mathbf{b},\mathbf{d}})$ respectively.

Treatment of the cyclic ketones (I_{a-d}) with some aromatic aldehydes, which are: benzaldehyde, p-bromo-,p-chloro-, p-nitro-benzaldehyde and p-tolaldehyde, in sodium hydroxide solution (2%) gave arylidene derivatives (II_{a-r}) .

Reaction of both of hydrazine hydrate and phenylhydrazine with arylidene derivatives (II_{a-r}) in glacial acetic acid and ethanol respectively, gave the corresponding pyrazoline derivatives (III_{a-r}) and phenylpyrazoline derivatives (IV_{a-r}) respectively.

Also, the reaction of benzoylhydrazine with the arylidene derivatives $(II_{a-f,h,j,l,n,0\&q})$ in glacial acetic acid gave the corresponding benzoylpyrazoline derivatives (V_{a-l}) .

Dibromo ketone derivatives (VI_{a-r}) were prepared by the reaction of arylidene derivatives (III_{a-r}) with bromine in glacial acetic acid, compounds (VI_{a-r}) were allowed to stand at room temperature for twenty four hours with secondary amine (morpholine) to give spiro-3-(\varkappa -morpholinoarylidene)derivatives (VII_{a-r}) .

On the other hand, hydrolysis of arylidene derivatives $(\mathbf{H_{a-r}})$ by boiling with sodium hydroxide solution (20%), the piperidinedione ring was opened to give the dicarboxylic acids $(VIII_{a-r})$.

The dicarboxylic acids $(VIII_a,c,h,i,l,m,n\&q)$ were converted to the anhydrides (IX_{a-h}) when treated with acetyl chloride.

When the anhydrides $(IX_b,d,f\&h)$ were allowed to react with benzene in presence of anhydrous aluminium chloride under Friedel-Craft's conditions to give the corresponding mono-carboxylic acids (X_{b-d}) .

Whereas action of diazomethane on $(II_{a,f,l\&r})$ gave Δ' -spiropyrazoline derivatives (XI_{a-d}) which on thermal decomposition gave (XII_{a-d}) . Action of alcoholic hydrochloric acid on (XII_{a-d}) gave dinitrophenyl hydrazone derivatives $(XIII_{a-d})$ after treatment with 2,4-DNP.

The structure of the previously mentioned products was discussed on the light of their micro-elemental analysis, infrared, nuclear magnetic resonance and mass spectroscopy.

INTRODUCTION

I- Synthesis and reactions of α,β unsaturated carbonyl compounds.

The process for the preparation of α , β -unsaturated ketones RCH=CHCOMe (R=heterocyclic group, substituted Ph) was carried out by Nakajima $\underline{\text{et.al.}}^{(1)}$, by treating an aldehyde RCHO (same R) with Me₂CO in the presence of perhydroisoindole or pyrrolidine as catalyst in H₂O as a solvent. By adding $4-(\text{Me}_2\text{N})\text{C}_6\text{H}_4\text{CHO}$ to a mixture containing Me₂CO, H₂O and pyrrolidine, pure Me₂NC₆H₄CH= CHCOMe (58.7% yield) was obtained.

On the other hand Tsukashima et.al. (2) prepared α , β - unsaturated ketones R'CH=CHCOMe (R'= α -alkyl aliphatic side chain, heterocyclic group) by the treatment of R'CHO with the alkali metal salt of MeCOCH₂CO₂M (M= alkali metal anion) in the presence of 3- azabicyclo-[3.2.2] nonane as catalyst or a secondary cyclic amine in mixture of H₂O and a water-insoluble organic solvent. A mixture of aqueous MeCoCH₂CO₂Na (0.20 mol), 3,5-dimethylpiperidine, H₂SO₄(pH 7), CHCl₃, and isobutyraldehyde was heated to 40° for 5h to give pure

5-methyl-3-hexen-2-one in 86.8% yield.

Also α , β -unsaturated ketones was prepared by Ishiyama et.al. (3) by means of the palladium-catalysed cross-coupling reaction between 9-alkyl-9-borabicyclo-[3.3.1] nonanes (9-R-9-BBN) and 1-halo-1-alkenes under carbon monoxide atmosphere. Thus, treatment of (E) Bu-CH=CHI 9-octyl-9-BBN in dioxane in the presence of Pd(PPh₃)₄ and K₃PO₄ under CO gave 98% (E) 5- pentadecen-7-one.

Treatment of 2-morpholino-3-butenenitriles with alkyl halides regionselectively afforded products alkylated on α - position to the nitrile group. Hydrolysis of the α -alkylation products gave the α , β -unsaturated ketones in good yields, this was investigated by Takahashi <u>et.al.</u> (4).

 ω -Bromoacetophenone can react with aryl aldehydes in the presence of sodium 0,0-diethyl phosphoro-telluroate to give α , β - unsaturated ketones at room temperature in ethanol with high yields $^{(5)}$. It was also reported that α -bromoketone reacted with aromatic aldehydes to form α , β - unsaturated ketones in the presence of dibutyl telluride $^{(6)}$.

Suzuki^(7&8) reported that the synthesis of α , β -unsaturated esters and nitriles can carried out by using sodium telluride in DMF, but the preparation of sodium telluride needs high temperature, and the reaction requires cooling. A large excess of α -haloesters and nitrile is also necessary.

Other tellurium reagents, such as dibutyl telluride $^{(6)}$, bis (4-methoxy-phenyl) telluroxide $^{(9)}$, and telluronium ylide $^{(10\&11)}$, have also been used to synthesize this type of compounds.

The Grignard reaction of β -(N-alkyl-N-acyl-amino) enones afforded regionselectively α,β -unsaturated β -(N-alkyl-N-acylamino) - alcohols, which were converted into α,β -unsaturated ketones by hydrolysis accompanying dehydration (12).

Conversion of saturated ketones to corresponding α , β -unsaturated ketones is an important synthetic method. Established methods are based on introduction of hetero atoms (Cl,Br,S,Se) at the α -position, and their elimination with β -hydrogen (13-15). Enones were

-4-

formed by the palladium-catalyzed decarboxylation-dehydrogenation of allyl ß-keto carboxylates (16) and alkenyl allyl carbonates (17). Also silyl enol ethers can be converted to enones by the palladium-catalyzed reaction of allylic carbonates (18). While novel catalytic method was reported for enone formation from enol acetates by the reaction of allyl methyl carbonate using Pd-(OAC)₂ and tin methoxide as a bimetallic catalyst as expressed by the following scheme:-

OAc
$$R^{1} \longrightarrow R^{2} + OCO_{2}Me \frac{Pd(OAc)_{2}}{MeOSnBu_{3}}$$

$$R^{1} \longrightarrow R^{2} + CO_{2} + AcOMe + OCO_{2}Me$$

Also Tsuji et.al. (18) proved that cyclic enol acetates (1) (n=1,2,3,8; R,R' = H,Me) derived from saturated ketones were converted to α , β -unsaturated cyclic ketones (2) by treating (1) with $H_2C=CHCH_2OCO_2Me$, using a pd-phosphine complex and Bu_3SnOMe .