
Thyroid Function in Chronic Renal Failure

A Thesis
Submitted for the partial fullfilment of
Master Degree in Pedaitrics

Ву

Mohamed Marzouk Abou-Gamrah M.B. B.Ch.

Supervisors

Prof. Dr. Farida Ahmed Farid
Professor of Pediatrics
Faculty of Medicine, Ain Shams University

BIP

Dr. Moustafa Mohamed El-Rasad

Assit. Professor of Biochemistry
Faculty of Medicine, Ain Shams University

Dr. Zeinab Awad El-Sayed 1995

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 1992

بسم الله الرحمن الرحيم

وقل رب زدني علماً

صدق الله العظيم سورة طه آية ١١٤

Acknowledgment

I would like to express my gratitude and sincere thanks to Professor Dr. Farida Ahmed Farid, Professor of Pediatrics, Ain Shams University, For presenting her kind, exceptional care and support, thus offering me a great and fruitful chance to perform this work in a proper and complete order.

I should also express and reveal deep and sincere love and thanks to Dr. Moustafa Mohamed El-Rasad, Assist. Prof. of Biochemistry, Ain Shams University, who guided, supported and helped in completion of this work.

Sincere thanks and gratitude should also be expressed to Dr. Zeinab Awad El-Sayed, Lecturer of Pediatrics, Ain Shams University, for her continuous assistance and valuable experienced help throughout each and every part of this work.

My deepest thanks for all the members of Pediatric Dialysis Unit for their great effort and assistance throughout this work. To my parents
To my helpful understanding wife
To my lovely boy
Mazen

CONTENTS

	Page	
Introduction		
Aim of the Work		
Review of Literature		
Thyroid gland	3	
Chronic renal failure	18	
Hemodialysis	36	
• Endocrine disorders in chronic renal failure	41	
Material and Methods		
Results		
Discussion		
Summary		
Conclusion		
Recommendations		
References		
Arabic Summary		

List of Tables

			Page
Table	1	Pathophsiology of CRF	21
Table	2	Pathogenesis of renal osteodystrophy	2 6
Table	3	Effect of CRF on body composition and fucntions	30
Table	4	Cortisol levels and its secretion in uremic patients	42
Table	5	Thyroid function test in uremic patients on HD	53
Table	6	Thyroid function in CRF and 1ry hypothyroidsim	56
Table	7	Clinical data of the control group	7 8
Table	8	Clinical data of the CRF patients not on HD	80
Table	9	Clinical data of the CRF patients on HD	82
Table	10	Collective laboratory data of the control group	84
Table	11	Collective laboratory data of the CRF patients not on HD	86
Table	12	Collective laboratory data of the CRF patients before HD	88
Table	13	Collective laboratory data of the CRF patients bafter HD	9 0
Table	14	Comparison of mean serum Na, K, urea, and creatinine	92
		levels in the three groups	
Table	15	Comparison of mean serum T ₄ , T ₃ , TBG, TSH, and FT ₄ I	94
		levels in the three groups	
Table	16	Comparison of mean level of laboratory parameters	9 6
		before and after HD	
Table	17	Comparison of mean level of laboratory parameters	98
		of CRF patients both not on and on HD	

List of Figures

				rage
ACTH	Α	Fig. 1	Biosynthesis of thyroid hormones	5
A.N.P.	A	Fig. 2	Structures of thyroid hormone	5
B.F.U.E.	B ₁	Fig. 3	Release of thyroid hormone	6
B. LPH	Bi	Fig. 4	Multiple effects of CRF on endocrine functions	4 1
C.F.U.E.	С	Fig. 5	Comparison of oral glucose tolerance test in azotemic	45
C.F.U.G.M.	С		and normal subjects	
CRF	С	Fig. 6	Pathogenesis of secondary hyperparathyroidism	48
ESRD	eı	Fig. 7	The mean values of T_4 in the three groups	99
FSH	Fc	Fig. 8	The mean values of T ₃ in the three groups	100
FT₄I	Fı	Fig. 9	The mean values of TBG in the three groups	101
GFR	G	Fig. 10	The mean values of TSH in the three groups	102
GH	G	Fig. 11	The mean values of FT ₄ I in the three groups	103
HD	H	Fig. 12	The mean values of T ₄ before and after HD	104
LH	L.	Fig. 13	The mean values of T ₃ before and after HD	105
PRL	P:	Fig. 14	The mean values of TBG before and after HD	106
PTH	P.	Fig. 15	The mean values of TSH before and after HD	107
RT ₃	R	Fig. 16	The mean values of FT ₄ I before and after HD	108
RT ₃ U	R	Fig. 17	Correlations between T ₃ and height	110
T_3	Т	Fig. 18	Correlations between T ₃ and urea	111
T_4	T	Fig. 19	Correlations between T ₃ and creatinine clearance	112
TBG	Т	Fig. 20	Correlations between T ₄ and urea	113
TRH	Т	Fig. 21	Correlations between T ₄ and creatinine clearance	114
TSH	Т	Fig. 22	Correlations between TBG and urea	115
TT ₃	T	Fig. 23	Correlations between TBG and creatinine clearance	116
TT	Т			

List of Abbreviations

ACTH Adreno-corticorophic hormone

A.N.P. Atrial natriuretic peptide

B.F.U.E. Burst forming units erythroid

B. LPH Beta lipoprotien

C.F.U.E. Colony forming units erythroid

C.F.U.G.M. Colony forming units granulocytes-monocytes

CRF Chronic renal failure ESRD end-stage renal disease

FSH Follicle stimulating hormone

FT₄I Free thyroxin index

GFR Glomerular filtration rate

GH Growth hormone

HD Hemodialysis

LH Luteinizing hormone
 PRL Prolactin hormone
 PTH Parathyroid hormone
 RT₃ Reverse triiodothyronine

RT₃U Resin triiodothyronine uptake

T₃ Triiodothyronine

T₄ Thyroxin

TBG Thyroid binding globulin
TRH Thyroid releasing hormone
TSH Thyroid stimulating hormone

TT₃ Total triiodothyronine

TT₄ Total thyroxin

List of Figures

		Page
Fig. 1	Biosynthesis of thyroid hormones	5
Fig. 2	Structures of thyroid hormone	5
Fig. 3	Release of thyroid hormone	6
Fig. 4	Multiple effects of CRF on endocrine functions	41
Fig. 5	Comparison of oral glucose tolerance test in azotemic	45
	and normal subjects	
Fig. 6	Pathogenesis of secondary hyperparathyroidism	48
Fig. 7	The mean values of T_4 in the three groups	99
Fig. 8	The mean values of T ₃ in the three groups	100
Fig. 9	The mean values of TBG in the three groups	101
Fig. 10	The mean values of TSH in the three groups	102
Fig. 11	The mean values of FT ₄ I in the three groups	103
Fig. 12	The mean values of T ₄ before and after HD	104
Fig. 13	The mean values of T ₃ before and after HD	105
Fig. 14	The mean values of TBG before and after HD	106
Fig. 15	The mean values of TSH before and after HD	107
Fig. 16	The mean values of FT ₄ I before and after HD	108
Fig. 17	Correlations between T ₃ and height	110
Fig. 18	Correlations between T ₃ and urea	111
Fig. 19	Correlations between T ₃ and creatinine clearance	112
Fig. 20	Correlations between T ₄ and urea	113
Fig. 21	Correlations between T ₄ and creatinine clearance	114
Fig. 22	Correlations between TBG and urea	115
Fig. 23	Correlations between TBG and creatinine clearance	116

Introduction

INTRODUCTION

The kidney plays a role in the metabolism and clearance of thyroid hormones, thyroid stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH). The kidney possesses a thyroxine-5-deiodinase which converts thyroxine (T_4) to triiodothyronine (T_3). It is also noted that normal renal functions, especially glomerular filtration rate, are influenced by the biologically active thyroid hormone T_3 (Oppenheimer, 1989).

Children with chronic renal failure share nonspecific clinical symptoms and signs seen in hypothyroidism such as growth retardation, poor appetite, lethargy, constipation, dry skin, and cold intolerance (Hardy et al., 1988).

Investigations of hypothalamo-pituitary-thyroid axis in patients with chronic renal failure have not yielded constant results, for example serum T_4 and T_3 levels have been found to be either low or normal (O'Sullivan and Murnaghan, 1989; and Sakurai et al., 1988). However, other studies uniformly reported normal serum TSH in these patients (Hardy et al., 1988).

It has been argued by some investigators that total T_4 and T_3 may be low but the free hormones were normal. This argument was supported by the low thyroid binding globulin (TBG) in some patients with protein-losing nephropathies. Other investigators, however, found normal TBG and low free T_3 in those patients (Lambert et al., 1989).

Aim of the Work

Ħ,

AIM OF THE WORK

In view of the above mentioned controversy, and of the importance of thyroid hormones for normal growth and development, the aim of this work is to study the thyroid hormone status in patients with chronic renal failure and the possible changes induced by hemodialysis.

Review of Literature