STUDIES ON NATURE OF SALT

TOLERANCE IN OKRA

Ву

ISLAH MOHAMED MOHAMED EL-HIFNY

A THESIS Submitted in Partial Fulfillment

of

The requirements for the degree of

y 39to

DOCTOR OF PHILOSOPHY

in

AGRICULTURAL SCIENCE

(Vegetable Crops)

DEPARTMENT OF HORTICULTURE
FACULTY OF AGRICULTURE
AIN SHAMS UNIVERSITY

1993

APPROVAL SHEET

STUDIES ON NATURE OF SALT TOLERANCE IN OKRA

Ву

ISLAH MOHAMED MOHAMED EL-HIFNY

B.Sc. (Agric.) Ain Shams Univ., 1974M.Sc. in (Vegetable Crops) Ain Shams Univ., 1985

This thesis for Ph. D. degree has been approved by:

Prof. Dr. Ibrahim, I. El-Oksh L. El. S. Kott....

Prof. of Vegetable Crops, Fac. of Agric. Ain
Shams Univ.

Prof. Dr. Khalifa, A. Okasha

(Supervisor)

Date of examination: 7/2/2 1993.

STUDIES ON NATURE OF SALT TOLERANCE IN OKRA

Ву

ISLAH MOHAMED MOHAMED EL-HIFNY

B.Sc. Agric., Ain Shams Univ., 1974

M.Sc. Agric. (Vegetable Crops), Ain Shams Univ., 1985

Under the supervision of:

Prof. Dr. Khalifa, A. Okasha

Prof. of Vegetable Crops

Prof. Dr. Refaat, M. Helal

Prof. of Vegetable Crops

ABSTRACT

Salt tolerance of four okra cultivars namely: White Velvet; Gold Coast; Balady and Eskandarani, were investigated during three different stages of plant development namely: seed germination, seedling and reproductive stages. At both first and second stages of plant development, various concentrations of sea water (diluted with tap water) were used for irrigation while at the third stage, various saline water with different electric conductivities were used for irrigation.

Results of these studies revealed that salinity reduced and delayed seed germination. At this stage, White Velvet cv. appeared to be tolerant to salinity. At the seedling stage, salinity generally reduced fresh weight of plant for all tested cultivars and Gold Coast was the least affected one. At the reproductive stage, salinity reduced plant growth and total yield/plant but with different degrees depending upon cultivar. In this respect, yield of both Gold Coast and Balady was not greatly reduced at the high level of salinity.

Results of Na, K, K: Na, Cl and amino-nitrogen as contributing factors for salinity tolerance, revealed that high accumulation of Na⁺ and Cl⁻, slight reduction in K content, low K: Na ratio, and low values of amino-nitrogen were noticed in leaves of both Gold Coast and Balady cultivars under high level of salinity.

The anatomical studies showed that salinity reduced xylem and phloem elements in okra roots depending upon both salinity level and cultivar.

Generally, the obtained results suggest that both Gold Coast and Balady Okra cultivars can be considered as tolerant genotypes to salinity and recommended for cultivation in both arid and semi-arid lands where salinity is considered a potential problem.

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Prof. Dr. Khalifa A. Okasha, Prof. of vegetable crops, Fac. of Agric., Ain Shams Univ., and the Director of Horticulture Research Instit., and Prof. Dr. Refaat M. Helal, Professor of vegetable crops, Fac. of Agric., Ain Shams University, for their supervision, valuable suggestions, Kind support, guidance, fruitful encouragement and cooperation during the whole work and preparing this manuscript.

I would like to thank and express my deep gratitude to Prof. Dr. Soheir Khalaf, head of Plant Production, Dept., Desert Res. Center, Ministry of Agriculture and land Reclamation, for her sincere helps and encouragement during this work.

My sincere gratitude to Dr. M.A. Salama, Prof. of Pomology, Cairo Univ., at El-Fayoum Branch, for his sincere help in the anatomical studies.

It is pleasure to acknowledge the unfailing helps have received from any member of both Hort. Dept. Fac. of Agric. Ain shams Univ., and Vegetable Crops Unit., Dept. of Plant Production, Desert Res. Center.

CONTENTS

F	age
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of salinity on seed germination	3
2.2. Effect of salinity on plant growth	6
2.3. Effect of salinity on yield	9
2.4. Effect of salinity on mineral content of plant	11
2.5. Mechanisms of salt tolerance	13
2.5.1. Physiological mechanisms	13
2.5.2. Anatomical structure mechanisms	16
3. MATERIALS AND METHODS	17
3.1. The first experiment	17
3.2. The second experiment	20
3.3. The third experiment	22
4. RESULTS AND DISCUSSION	29
4.1. THE FIRST EXPERIMENT	
" Effect of different levels of diluted sea	
water on seed germination"	29
4.1.1. Seed germination percent	29
4.1.2. Germination velocity	32
4.2. The SECOND EXPERIMENT	
" Effect of different levels of diluted sea	
water on seedling growth"	35

cont.:

	:	Page
4	1.3. THE THIRD EXPERIMENT	
	" Effect of irrigation with various levels of	
	saline water on growth, yield, plant mineral	
	content, amino-nitrogen and root structure"	42
	4.3.1. Plant growth	42
	4.3.1.1. Plant height	42
	4.3.1.2. Plant fresh weight	45
	4.3.1.3. Plant dry weight	46
	4.3.2. Total yield	54
	4.3.3. Effect of salinity on mineral content of	
	plant	60
	4.3.3.1. Potassium	60
	4.3.3.2. Sodium	60
	4.3.3.3. Chloride	67
	4.3.3.4. Amino-nitrogen	68
	4.3.4. Anatomical studies	70
5.	SUMMARY AND CONCLUSION	75
6.	LITERATURE CITED	81
-	ADADIO CHWAADV	

LIST OF TABLES

No:		Page
A.	Chemical analysis of sea water	18
в.	Physical and chemical analysis of the used soil	18
c.	Chemical analysis of tap water	18
D.	Physical and chemical analysis of the used soil of the	
	experimental form	23
Ε.	Chemical analysis of the used irrigation water	25
1.	Effect of different levels of diluted sea water on	
	seed germination percentages of four okra cultivars	30
2.	Effect of different levels of diluted sea water on	
	germination velocity of four okra cultivars	33
з.	Growth comparisons of four okra cultivars grown in	
	control and salinized nutrient solution 42 days after	
	salinity treatments (First season)	36
4.	Growth comparisons of four okra cultivars grown in	
	control and salinized nutrient solution 42 days after	
	salinity treatments (Second season)	38
5.	Vegetaive growth of three okra cultivars relative to	
	Balady grown under control conditions and their	
	relative salt tolerance at three salinity levels	
	(average of two seasons)	40
6.	Effect of irrigation with various levels of saline	
	water on plant height and fresh weight of leaves,	
	stems and roots of four okra cultivars, 1988 season	43

Contin. List of Tables

No:	I	age
7.	Effect of irrigation with various levels of saline	
	water on plant height, and fresh weight of leaves,	
	stems and roots of four okra cultivars, 1989 season .	44
8.	Effect of irrigation with various saline water	
	levels on plant height (Cm) of four okra cultivars	
	(averages of two seasons)	47
9.	Effect of irrigation with various saline water	
	concentrations on dry weight of leaves, stems and	
	roots/plant of four okra cultivars, 1988 season	49
10.	Effect of irrigation with various saline water	
	concentrations on dry weight of leaves, stems and	
	roots/plant of four okra cultivars, 1989 season	50
11.	Salt tolerance of four okra cultivars as affected	
	by irrigation with different levels of saline water,	
	first season	52
12.	Salt tolerance of four okra cultivars as affected	
	by irrigation with different levels of saline water,	
	second season	53
13.	Effect of irrigation with various saline water	
	concentrations on number of fruits/plant, fruit	
	weight and total yield/plant of four okra cultivars,	
	1988 season	55

щ.		rugo
14.	Effect of irrigation with various saline water	
	concentrations on number of fruits/plant, fruit	
	weight and total yield/plant of four okra cultivars,	
	1989 season	57
15.	Effect of irrigation with various saline water	
	concentrations on potassium, sodium and chloride	
	contents in leaves of four okra cultivars	
	(averages of two seasons)	61
16.	Effect of irrigation with various saline water	
	concentrations on potassium, sodium and chloride	
	contents in fruits of four okra cultivars (averages	
	of two seasons)	63
17.	Potassium : Sodium ratio in leaf and fruit of four	
	okra cultivars as affected by different levels of	
	salinity	66
18.	Amino-nitrogen in leaf tissue of four okra cultivars	
	under control and salinized conditions	69
19.	Root anatomy of four okra cultivars as affected by	
	different levels of saline irrigation water	7:

LIST OF FIGURES

No:		Page
1.	Seed germination percentages of four okra cultivars	
	as affected by various levels of salinity	31
2.	Germination velocity of four okra cultivars as	
	affected by various levels of salinity	34
3.	Fresh weight percentage from control as affected	
	by various levels of salinity for four okra	
	cultivars (First season)	37
4.	Fresh weight percentage from control as affected by	
	various levels of salinity for four okra cultivars	
	(Second season)	39
5.	Effect of irrigation with various saline water	
	concentration on plant height (Cm) of four okra	
	cultivars (averages of two seasons)	48
6.	Effect of irrigation with various saline water	
	concentrations on total yield/plant, 1988 season	56
7.	Effect of irrigation with various saline water	
	concentrations on total yield/plant, 1989 season	58
8.	Potassium, sodium and chloride contents in mature	
	leaves of four okra cultivars irrigated by different	
	levels of saline water (average of two seasons)	62
9.	Potassium, sodium and chloride contents in fruit of	
	four okra cultivars irrigated by different levels of	
	saline water (avergae of two seasons)	64

LIST OF PLATES

No:	Page
 Seedlings growth of four okra cultivars as affected by various concentrations of diluted sea water 	
2. Cross sections in main roots of White velvet, Gold Coast, Balady and Eskandarani okra cultivars as	
affected by various saline irrigation water	71

INTRODUCTION

I. INTRODUCTION

Okra (Abelomoschus esculentus) is an important vegetable crop in many countries. In A.R. Egypt, it is of great importance where it is grown for market and processing. The area devoted to okra in 1991 was 11115 Feddans with an average 5.9 ton/Feddan*.

The increasing demands of the expanding population for food and energy necessitate the increase of arable land by exploiting marginal areas such as arid and semi arid lands. Such areas are characterized by high salinity in the soil and in the major water resources.

The improvement of salt tolerance in agricultural species has been promoted as an agronomic approach to the exploitation of large areas of saline soils and the efficient use of the relatively abundant water supplies that currently have little agricultural value.

Salt tolerance is not a constant character in plants but it varies with environment and plant development.

It can be measured by a number of criteria such as survival at high salt concentrations, the determination of growth response under saline conditions and a relative reduction in yield as a function of increasing soil salinity.

^{*} Department of Agricultural Economics and Statistics, Ministry of Agriculture and Land Reclamation, A.R.E.