AIN SHAMS UNIVERSITY INSTITUTE OF POST GRADUATE CHILDHOOD STUDIES MEDICAL DEPARTMENT

Tetrahydrobiopterin Deficiency in Patients With PhenylKetonuria

Submitted in Fu¹fillment of Ph. In Childhood Studies
Medical Department

67918

By
Amira Mohamed Diaa ElDir ElTantawy

616.928.

Supervised By

(in ten)

Dr. Samia A.Temtamy Professor of Human Genetics National Research Center Dr. Mohamed ElSawi Professor in Paediatrics Department "Genetic Unit" Ain Shams University

The same

Dr. Ikram Fateen Assisstant Professor of Biochemistry National Research Center

1998

435-1

Acknowledgment

First, and foremost, I feel always indebted to God, the most kind and the most merciful.

Before presenting this study, I wish to express my deepest gratitude, sincere appreciation, and indebtedness to Professor Dr. Samia A. Temtamy, Professor of Human Genetics, Human Genetics Department, National Research Center, to whom I owe a very special debt for giving me the honor of working under her guidance. Without her wisdom, close and continuous supervision constructive criticism, relentless support and patience I would not have achieved what I have achieved today.

I would like to express my sincere gratitude and deep appreciation to Professor Dr. Mohamed Abdel Adel ElSawi, Professor of pediatrics, Pediatric Department, "Genetic Unit", Ain Shams University for giving me the honor of working under his supervision, for his kind help, constructive critism, guidance, and follow up, and his keenness for high standards of performance which was a real encouragement to accomplish this work.

I have no suitable words to convey a meaningful message of gratitude and deepest heartily thanks and respect to Dr. Ekram Fateen, Assistant Professor of Biochemistry, Human Genetics Department, National Research Center, for her sincere advice and her generous and continuous help and her creative thoughts and patience during the progress of this work.

I should pay my utmost gratitude to all senior staff and my colleagues in Pediatric Department, Ain Shams University and Human Genetic Department, National Research Center, and Institute of post graduate Childhood studies, who all over the years helped and assisted me.

I wish also to express my deep appreciation to Milupa company for their help and cooperation.

Finally my deep appreciation is expressed to the patients of outpatient genetics clinic of the National Research Center.

Table of Contents

	Page	number
Acknowledgment		
List of abbreviations		
List of figures		
List of tables		
Introduction		1
Aim of the work.		4
Background and Review of literature:		
Inborn Errors of Metabolism.		5
- Major clinical manifestations		8
- Abnormal laboratory findings		28
- Classification of IEM		33
Phenylketonuria.		37
- History.		37
- Incidence.		38
- Biochemistry.		39
- Genetics.		47
- Hyperphenylalaninaemia.		52
- Clinical presentation.		64
- Diagnosis.		71
- Maternal Phenylketonuria.		91
- Paternal phenylketonuria.		97
- Management		98
- Prognosis.		110
Subjects and Methods.		113
Results.		121
Discussion.		167
Summary and Conclusions		183
References		187
Arabic Summary		

List of abbreviations

AIDS	Acquired immuno-deficiency syndrome
APM	Aspartame
ATP	Adenosine triphosphate
BH2	Dihydropterin
BH4	Tetrahydrobiopterin.
BMD	Bone mineral density
CDG	Carbohydrate deficiency glycoprotein
СНО	Carbohydrate Carbohydrate
CNS	Central nervous system
	Carbon dioxide
CO2	
CSF	Cerebrospinal fluid
CT	Computed tomography
DGGE	Denaturating gradient gel electrophoresis
DHPR	Dihydropteridine
DNA	Deoxyribonucleotide
DNPH	Dinitrophenylhydrazine
DXA	Dual-energy X-ray absorption
EEG	Electroencephalography
FAO	Fatty acid oxidation defects.
FDP	Fructose diphosphatase
FeCl ₃	Ferric chloride
G6P	Glucose-6-phosphate
GTP	Guanosine triphosphate
GTP-CH	Guanosin triphosphate cyclohydrolax
HMG-CoA	3-Hydroxy-3-Methylglutaryl coenzyme A
HPLC	High performance liquid chromatography
IEM	Inborn error of metabolism
IQ	Intelligent quotient
I.V.	Intravenous
KCl	Potassium chloride
LC	Liquid chromatography

3 CD	15.
MR	Mental Retardation
MRI	Magnetic Resonant Imaging
MSUD	Maple syrup urine disease
ND	Not done
NKH	Nonketotic Hyperglycemia
P	Short arm of chromosome
PAH	Phenylalanine hydroxylase
PAL	Phenylalanine ammonia liase
PCD	Pterin Carbinolamine dehydratase
PCR	Polymerase chain reaction
PEPCK	Phosphoenolpyruvate carboxykinase
PH	Phenylalanine hydroxylase
Phe	Phenylalanine
PKU	Phenylketonuria.
PTS, PTPS	Pyruvoyl-tetrahydropterin synthase
q	Long arm of chromosome
RBC _s	Red Blood Corpuscles
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
SAH	S.adenosyl homocysteine hydrolase
SBMD	Spine bone mineral density
SD	Standard deviation
SO	Sulfite Oxidase deficiency
Syn	Syndrome
TBMD	Total body bone mineral density
TLC	Thin layer chromatography
UK	United Kingdom
USA	United States of America
VEP	Visual evoked potential
VNTR	Variable number of tandem repeats

List of Figures

Figures		Page
		Number
Figure 1	Outline of phenylalanine metabolism	42
	showing the origin of the major	
	abnormal metabolites found in PKU.	
Figure 2	Summary of tetrahydrobiopterin	45
	metabolism.	
Figure 3	Hydroxylation of phenylalanine to	55
_	tyrosine with synthesis and recycling of	
	pterins in liver and in amine producing	
	cells.	
Figure 4	Diagnostic consideration with positive	76
	Guthrie test.	
Figure 5	Simultaneously measured maternal	94
	and cord blood phenylalanine	
	concentrations	
Figure 6	Sex distribution in the studied cases	142
Figure 7	Consanguinity in the studied cases	143
Figure 8	Number and percent of positive DNPH,	144
	FeCl3 and TLC in the studied cases	
Figure 9	Mean neopterin level before and after	146
	BH4 loading	
Figure 10	Mean neopterin change after BH4	147
	loading	
Figure 11	Mean biopterin level before and after	148
	BH4 loading	
Figure 12	Mean biopterin change after BH4	149
	loading	
Figure 13	Mean DHPR in the studied group	150
Figure 14	Significant positive correlation between	152
	change in neopterin and change in	
]	biopterin in the studied cases	

List of Tables

Tables		Page
		no
Table 1	IEM with presentation in Neonatal	11
	period.	
Table 2	Some clinical findings often associated	14
	with IEM.	<u> </u>
Table 3	Chronic diarrhea, poor feeding,	15
	vomiting, failure to thrive.	
Table 4	Diagnostic approach to recurrent attacks	19
	of coma and vomiting with lethargy.	
Table 5	IEM associated with abnormal odor.	24
Table 6	General approach to hypoglycemia.	31
Table 7	Estimates of phe requirements in	41
	humans.	i
Table 8	Types of Hyperphenylalaninaemia.	56
Table 9	Causes of Hyperphenylalaninaemia.	57
Table 10	Hyperphenylalaninaemia	59
Table 11	Inborn errors of tetrahydrobiopterin	60
Table 12	Protocol of diagnostic biochemical	74
	studies.	
Table 13	Pterins used in differential diagnosis of	81
	BH4 deficiencies	
Table 14	Material used for the prenatal diagnosis	90
	of BH4 deficiencies	
Table 15	Percentage of subjects with abnormalities	96
	in the offspring of mothers with PKU.	
Table 16	Clinical data of the studied cases	118
Table 17	Sex distribution in the studied cases	132
Table 18	Consanguinity in the studied cases	133
Table 19	Laboratory data of the studied cases	141

Table 20	Descriptive data of all patients studied	145
Table 21	Comparison between before and after	145
·	regarding neopterin and biopterin	
Table 22	Correlation Matrix was done between	151
	different parameters.	
Table 23	Descriptive data of the female cases.	153
Table 24	Descriptive data of the male cases.	153
Table 25	Comparison between the two groups	154
	regarding DHPR, Neopterin change and	
	biopterin change.	
Table 26	Descriptive data of non Consanguineous	155
	group.	
Table 27	Descriptive data of Consanguineous	155
	group	
Table 28	Comparison between the two groups	156
•	regarding DHPR, Neopterin change and	
•	biopterin change.	
Table 29	Descriptive data of Descreased weight.	157
Table 30	Descriptive data of Normal weight.	157
Table 31	Comparison between the two groups	158
	regarding DHPR, Neopterin changand	
	biopterin change	
Table 32	Descriptive data of Decreased Height	159
	group.	
Table 33	Descriptive data of Normal Height	159
	group.	
Tables 34	Comparison between the two groups	160
	regarding DHPR, Neopterin change and	
	biopterin change.	

,

Table 35	Descriptive data of decreased head circumference	161
Table 36	Descriptive data of normal head circumference	161
Table 37	Comparison between the two groups regarding DHPR, Neopterin change and biopterin change.	162
Table 38	Descriptive data of abnormal CNS tone group	163
Table 39	Descriptive data of normal CNS tone group	163
Table 40	Comparison between the two groups regarding DHPR, Neopterin change and biopterin change.	164
Table 41	Descriptive data of abnormal reflexes	165
Table 42	Descriptive data of normal reflexes	165
Table 43	Comparison between the two groups regarding DHPR, Neopterin change and biopterin change.	166

VTRODUCTION	

Introduction

Inborn errors of metabolism are individually rare, but collectively numerous. Many general practitioners and pediatricians only think of IEM in very unspecific clinical circumstances such as psychomotor retardation or seizures, they ignore most of the highly specific symptoms which are excellent keys to the diagnosis. Although most genetic metabolic errors are hereditary and transmitted as recessive disorders, the majority of cases appear sporadic, because of the small size of siblings in developed countries. Hereditary does not mean "congenital" and many patients can present a late onset form in childhood, adolescence or even adulthood [Burton, 1987].

One of the more common IEM is hyperphenylalaninemia which is mostly due to a defect in the hepatic enzyme phenylalanine hydroxylase, which catalyzes the conversion of phenylalanine to tyrosine. As a result, concentrations of phenylalanine increase relative to tyrosine in blood and other body fluids. A parallel increase occurs in the production and excretion of phenylketones and phenylamines [Scriver, et al., 1995].

The term phenylketonuria is often reserved, rather illogically, for more severe forms of deficiency in the enzyme phenylalanine hydroxylase in which urinary phenylketones are easy to detect by simple chemical methods [Kaufman, 1987].

The exact pathogenesis is not clear, but failure of myelination and of brain development is thought to underlie

the mental retardation, impaired melanin synthesis is believed to be responsible for the lighter than expected pigmentation of PKU patients.

Other variants of classic PKU detected in the neonatal period include mild PKU and hyperphenylalaninaemia. [Okano, et al., 1991].

Tetrahydrobiopetrin deficiency, a variant of hyperphenylalaninaemia are very heterogenous ranging from mild forms requiring only marginal if any treatment to severe forms which are in some cases very difficult to treat. All variants of tetrahydrobiopterin deficiency can be differentiated from the classical PKU by measurement of pterin metabolites in patients' urine, tetrahydrobiopterin loading test and by dihydropteridine reductase activity in erythrocytes from the Guthrie card [Blau, et al., 1996]. Because patients in the two groups require different treatment to prevent irreversible neurological damage, tetrahydrobiopterin deficiency among newborns with hyperphenylalaninaemia must be rapidly diagnosed and distinguished from classic PKU [Blau, 1988; Dhondt, 1991].

The following enzyme defects are known to cause tetrahydrobiopterin - dependent hyperphenylalaninemia [Blau et al., 1989; Scriver et al., 1995]:

- GTP cyclohydrolase
- 6-pyruvoyltetrahydropterin synthase
- Dihydropteridine reductase
- Carbinolamine dehydratase deficiency.

Recently, it has been recommended that a low phenylalanine diet for life should be introduced to patients