S UNIVERSITY OF HEDICINE

THE ROLE OF INTRAVENOUS DILTIAZEM FOR ACUTE NTROL OF RAPID ATRIAL FIBRILLATION

BY
HASSAN HAMED MCHAMED KHALAF
THESIS
Submitted in partial fulfillment
For Master Degree
IN
Cardiology

616.125 H. H

Super isors

Dr. 4-4 d Jerahim Nassar

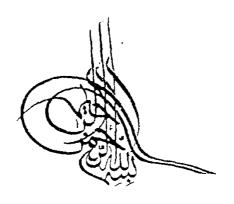
esst. Professor

(A. diology

alty of Madricine

(A. Shows University

Dr. SAID A. KHALID


Asst. Professor

of Cardiology

Faculty of Medicine

Ain Shams University

1992

« قال تعالى »

وَيَسْعَلُونَكُ عَنِ الرَّوْجَ قُلِ الرَّوْجِ مِنْ أَمْرِرَبِّ وَمَا أُونِينُمُ وَيَا أُونِينُمُ وَيَا أُونِينُمُ وَيَا أُونِينُمُ وَيَا أُونِينُمُ وَيَا أُونِينُمُ وَيَا أُونِينَمُ وَيَا أُونِينَهُمُ وَيَا أُونِينَا لَا يُعْمِيلُونَا أُونِينَا لَا يَعْمُ وَيَا أُونِينَا لِي اللّهُ فَالِيلًا فَاللّهُ فَاللّهُ فَاللّهُ فَاللّهُ فَاللّهُ فَاللّهُ فَاللّهُ فَيْعُلُونَا لُونِينَا لِي اللّهُ فَاللّهُ فَاللّهُ فَاللّهُ فَيْمُ لِللْهُ فَاللّهُ ف

« صدق الله العظيم» « سِرُؤَرُلُو الْإِسْرَاءُ »

THE ROLE OF INTRAVENOUS DILTIAZEM FOR ACUTE CONTROL OF RAPID ATRIAL FIBRILLATION

BY

HASSAN HAMED MOHAMED KHALAF

THESIS

Submitted in partial fulfillment

For Master Degree

Ιn

Cardiology

Supervisors

Dr.

AHMED IBRAHIM NASSAR

Asst. Professor
of Cardiology
Faculty of Medicine
Ain Shams University

Dr.

SAID A. KHALID

Asst. Professor

of Cardiology

Faculty of Medicine

Ain Shams University

1992

ACKNOWLEDGEMENT

It is an absolute obligation on the doctor to use only drugs about which he has troubled to inform himself. My work is presented to ALAH ALRAHMAN, deepest thankes are always first for his endless graces; My sincere thanks and gratefulness are directed to Dr. Ahmed I Nassar asst. prof. of cardiology Ain Shams university for his kind supervision and support. I am deeply indepted to Dr. Said A Khalid asst. prof. of cardiology Ain Shams university for his continuos help, guidnce encounagement during this study. My deep apperciation to Dr. Dhiya'a Abu Shokah head of cardiology departement National Heart Institute for his great and kind help. I hope I could express my love to my parants, my sister and my brothers Dr. Mohamed and Engeneer Eihab who spent the tiresome nights before the microprocessor to type and retype this work.

TO ALAH THEN TO MY FAMILY

INDEX

		FHUE
	AIM OF THE WORK	1
	REVIEW OF LITERATURE	2
	* CALCIUM ANTAGONISTS	···· 2
	Terminology and classification	
*	Comparative clinical electro physiology	B
*	Comparative effects on left ventricular performance	15
	* DILTIAZEM	- 23
L	·	
*	Discovery	- 23
*	Chemistry	- 23
*	PharmacoKinetics	- 24
	Absorbtion and oral bioavailability	24
	Metabolic pathways	25
	Plasma protein binding	26
	Serum concentration and drug assay	27
	Excretion	27
	Diltiazem / Digoxia interaction	28
*	Mechanism of action	29
	Cellular effects	29
	Tissue selectivity	31
*	Pharmacodynamics	- 32
Ī) Cardiovascular system	32
	A> Heart	32
	Electrophysiology	32
	Myocardial contractility	33
	R) Rinnd veccels	34

I

C) Hemodynamics	37
II) Effects on blood elements	40
Platelets	40
Neutrophils	40
Erythrocytes	41
III) Effects on Renal function and electrolytes	41
IV) Effects on metabolism	41
Glucose tolerance	41
Plasma lipoproteins and antiatherogenic effect	42
V) Effects on skeletal muscles	43
* Adverse effects	43
* Overdosage, toxicity and treatment of toxicity	45
* Contraindications	46
* Clinical uses	47
I) Ischemic heart disease	47
Prinzmetal variant angina	47
Chronic stable angina	50
Unstable angina pectoris	52
Acute myocardial infarction	54
Coronary angioplasty	56
II) Cardiac dysrhythmias	56
Supraventricular tachycardia	57
Atrial fibrillation	59
Ventricular arrathmias	62
III) Systemic hypertension	62
* Potential uses	- 65
Cardiomyopthy	65
Dilated cardiomyopthy	65
Hypertrophic cardiomyopthy	65
Pulmonary hypertension	66
Preopertively in open heart surgery	68
Bronchial asthma	68
Migraine	68
Portal hypertension	69
Spastic oesophagus	69

AIM OF THE WORK

* Calcium ions play a critical role in many vital biologic processes in all cells. Within the cardiovascular System, calcium is importantly involved in the activation of cardiac cells, the genesis of the action potential. the coupling of electrical activation to myocardial contraction and the constriction of vascular smooth muscle. Calcium antagonists, which block the entry of calcium into cardiac and smooth muscle cells, represent one of the most important developments in cardiovascular therapeutics in the latter half of this centary (Braunwald E, 1987).

* TERMINOLOGY AND CLASSIFICATION :

In the $1960_{_{
m S}}$ the concept of calcium antagonism was pioneered in Europe independently in Fleckenstein 's and Solfraind 's laboratories, by studies on cardiac muscle and on vascular smooth muscles. Drugs of several chemical families have been identified as calcium antagonists. (Godfraind T, 1987).

A calcium antagonist, a compound that does not necessarily (and in fact is unlikely to) compete with Ca^{2+} for a binding site may be defined as a drug that alters the cellular function of calcium, by inhibiting its entry and [or] its release and [or] by interfering with one of its intracellular actions. Subgroups of calcium antagonists can therefore be defined. Those that specifically inhibit Ca^{2+} entry into cells

due to tissue excitation by various stimuli have been called calcium entry blockers (Godfraind T, 1981). This antagonistic activity is most likely due to interaction with calcium channels activated by membrane depolarization or by receptor stimulation, and, in these circumstances, these agents may also be termed calcium channel blockers or inhibitors. When blockade occurs at the level of the "slow" channels in cardiac tissues, the term <u>slow channel</u> <u>blockers</u> has been used some of their (verapumil, nifedipine, diltiazem and derivatives). The designation "calcium agonist" has been introduced recently to characterize dihydropyridine derivatives that increase the probability of calcium channel opening instead of blocking them. The whole group of agents affecting calcium movements has recived the general denomination of calcium modulator (Godfraind T, 1986) which may be divided into facilitators or inhibitors "calcium antagonists".

A useful way to subclassify calcium modulators is to take into account the subcellular localization of their site of action "Table 1".

* AIM OF THE WORK

The aim of this study is to evaluate the efficacy and safety of intravenous diltiazem for acute control of rapid atrial fibrillation on the base of ventricular rate response.

INTRODUCTION AND REVIEW OF LITERATURE

	* CALCIUM ANTAGONISTS	- 2
*	Terminology and classification	- 2
*	Comparative clinical electro physiology	- В
*	Comparative effects on left ventricular performance	15
Γ	* DILTIAZEM	23
l		
	Discovery	
	Chemistry	
	PharmacoKinetics	
	Mechanism of action	
	Pharmacodynamics	
*	Adverse effects	43
	Overdosage, toxicity and treatment of toxicity	
	Contraindications	
*	Clinical uses	47
*	Potential uses	65
_		
	* ATRIAL FIBRILLATION	70
*	Machanism	70
*		
*	Mechanism of ventricular rate in AF	
	Clinical conditions associated with atrial fibrillation	
*	Hemodynamic effects of AF	
*		
	Prognostic significance of AF	
	Current lines of treatment	

* CALCIUM ANTAGONISTS

×	TERMINOLOGY AND CLASSIFICATION	2
*	COMPARATIVE CLINICAL ELECTRO PHYSIOLOGY	8
•	COMPADATIVE EFFECTS ON LEFT VENTRICULAR PERFORMANCE	15